Betriebssysteme
Kritische Abschnitte

Universitat
Bremen

Themenubersicht
» Motivation » Aktives Warten Nachweise
» Race Condition » Striktes Abwechseln POSIX-Bibliothek
* Transaktion * Petersons Algorithmus Umsetzung
» Kritische Abschnitte » Test-and-Set Variable
« Race Condition Il » Bewertung
« Race Condition Il » Ringbuffer
* Nicht-blockierendes
Schreiben

Grundlagen

Universitat
Bremen

Motivation — Therac-25

« Elektronenlinearbeschleuniger
« Strahlentherapie von Krebstumoren
» Todesfalle in den 1980er auf Grund Uberhohter Strahlendosis

The technician recalled changing the command 'x' to 'e’ that day. It was found that
doing it quickly enough resulted in radiation overdose in almost 100% of cases.

-
s

v =
o

=

S
—-
r—;
=%
-
=

L0

ok pin
L'
-

Quelle: https://pvs-studio.com/en/blog/posts/0438/

Universitat
Bremen

Erinnerung — Race Condition

« Szenario: Zwei Personen versuchen gleichzeitig Geld vom gleichen Konto abzuheben.
 Randbedingungen: Der Kontostand darf nicht unter null sinken.

ATM(P1) : ATM(P2) :
int a = 1dinputAccountNumber () ; int a = 1dinputAccountNumber () ;
float x = inputAmount(); float x = inputAmount();
float b = getBalance(a); float b = getBalance(a);
if (x <= b) { if (x <= b) {
b =b - x; b =Db - x;
setBalance(b); setBalance(b);
outputCash(x); outputCash(x) ;
} }

Parallele Ausfiihrung

Universitat
Bremen

Erinnerung — Race Condition

« Szenario: Zwei Personen versuchen gleichzeitig Geld vom gleichen Konto abzuheben.
 Randbedingungen: Der Kontostand darf nicht unter null sinken.

ATM(P1) :

int a = 1dinputAccountNumber () ;
float x = dinputAmount(); // x = 20
float b = getBalance(a); // b = 100

if ((x <= b) {

}

b =b - x;
setBalance(b);
outputCash(x);

// 20 <= 100
// b = 80
// Setzt auf 80

ATM(P2) :

int a = 1dinputAccountNumber () ;
float x = inputAmount(); // x = 50
float b = getBalance(a); // b = 100

if (x <= b) { // 50 <= 100
b =b - x; // b = 50
setBalance(b); // Setzt auf 50

}

outputCash(x);

Universitat
Bremen Grundlagen

Transaktion

» Eine Transaktion ist eine logisch koharente Sequenz von
Programmanweisungen
« Stammt aus Datenbanken aber wurde in den Bereich der
Betriebssysteme uUbernommen
* Fur eine isolierte Transaktion gibt es ublicherweise die folgenden
Korrektheitsanforderungen:
« Atomizitat Eine Transaktion wird gar nicht oder vollstandig ausgefiuhrt
* Konsistenz Die Auswirkungen einer Transaktion muss mit konsistent
mit den Daten-Constraints sein
* Isolation Die Auswirkung einer Transaktion darf erst nach Abschluss
sichtbar sein. Zwischenzustande durfen nicht sichtbar sein.
« Dauerhaftigkeit Der Effekt einer Transaktion muss persistent sein
(auch im Falle eines Hardware-Ausfalls)

Universitat
Bremen Grundlagen

Gleichzeitige Transaktionen

Gegeben eine Sammlung von Transaktionen Ty, T, ..., T,, , dann ist
eine gleichzeitige Ausfuhrung (T, | T, Il -+ |l T,,) serialisierbar, wenn
es eine Permutation m:{1,2,...,n} - {1,2,..n} gibt, so dass der
Effekt der gleichzeitigen AusfUhrung die gleiche Auswirkung wie
eine sequentielle Ausfuhrung haben T, (1); T,(2); ...; T, (n).

Das Geldabheben aus dem Beispiel versto3t gegen die Serialisier-
barkeitseigenschaft, da es keine Ausfuhrungsreihenfolge gibt, die
das gleiche Ergebnis liefert:

Angenommen Prozess 1 mdchte 80€ abheben und Prozess 2
mdchte 50€ abheben. In beiden Mbglichkeiten wird nur eine Trans-
aktion durchgefiihrt. Die andere wird abgelehnt.

Kritischer Abschnitt

Ein Code-Abschnitt einer Transaktion, dessen parallele Ausfuhrung
die Serialisierbarkeitseigenschaft verletzt, nennt man einen
kritischen Abschnitt.

Hinweis: Der kritische Abschnitt in nebenlaufigen Transaktionen
kann unterschiedliche Code-Abschnitte enthalten.

Beispiel: Eine Transaktion fuhrt eine Abhebung, wahrend eine
andere Transaktion eine Geldeinzahlung durchfihrt.

\E!,Bﬂﬁﬁ“t
Kritischer Abschnitt — Beispiel

ATM(P1): ATM(P2) ;

int a = inputAccountNumber () ; int a = inputAccountNumber ()

float x = dinputAmount(); float ¢ = dinputCash();
float b = getBalance(a); float b = getBalance(a);
)

if ((x <= b) {

b =>b - x; b =b + c;
setBalance(b); setBalance(b) ;
outputCash(x);

}

Parallele Ausfiihrung W Kritischer Abschnitt

Universitat
Bremen

Race Conditions — Beispiel

« Szenario: Nicht-atomarer schreibender Zugriff auf den Speicher.

 Randbedingungen: Auf einer 32-Bit-Architektur braucht das Schreiben eines 64-Bit Integer zwei
Taktzyklen.

long long z;

P1: P2:

long long foo = 111 << 32; long long bar = 11l1;
Iz = foo; I z = bar;

Parallele Ausfiihrung W Kritischer Abschnitt

Universitat
Bremen

U

Race Conditions — Beispiel

Bit 63 -> 32 Bit 0 -> 31
foo
Bit 63 -> 32
z

long long z;

P1:

long long foo = 111 << 32;

Iz = foo;

Parallele Ausfiihrung

Bit 63 -> 32 Bit @ -> 31
bar
Bit 0 -> 31

Diese nebenlaufige Transaktionen
sind nicht serialisierbar, da die
serielle Ausfihrung in z = [1,0]
oder z = [0, 1] endet

P2:

111;

long long bar

bar;

j -

B Kritischer Abschnitt

11

@ Bremen
Kritischer Abschnitt — Beispiel

int myStack[MAX];
size_t s = 0;
while (1) { while (1) {

if (s> 0) {

I myStack[s] = produce(); < - s - 1:
- - ’
s = s + 1; I int x = myStack[s];

, consume (x) ;

}

}

Parallele Ausfiihrung W Kritischer Abschnitt

Universitat
Bremen

Themenubersicht
» Motivation » Aktives Warten Nachweise
» Race Condition » Striktes Abwechseln POSIX-Bibliothek
* Transaktion * Petersons Algorithmus Umsetzung
» Kritische Abschnitte » Test-and-Set Variable
« Race Condition Il » Bewertung
« Race Condition Il » Ringbuffer
* Nicht-blockierendes
Schreiben

Losungen

@ Branon &t
Aktives Warten

void enter_critical(int pid) {
while (<condition for entering CS not fulfilled>);
// now CS can be entered

}

void leave_critical(int pid) {
<reset condition variables to indicate that CS has been left>;

}

Aktives Warten fuhrt eine Schleife aus, bis eine Bedingung zum Betreten des kritischen Abschnitts erfullt
ist. Beim Betreten wird sichergestellt, dass die Bedingung nicht mehr halt und beim Verlassen muss die Be-
dingung wieder hergestellt werden.

enter_critical(pid);
// kritischer Abschnitt

leave_critical(pid);

14

Universitat
Bremen

Striktes Abwechseln

* Prozesse wechseln sich ab
» Reihenfolge strikt vorgegeben

* Prozesseanzahl festgelegt

const int process_count = ...;

int turn = 0;

void enter_critical(int pid) {
while(turn != pid);

void leave_critical(int pid) {

turn = (turn + 1) % process_count;

* VVerfahren ist eher akademischer Natur
* Alle Prozesse mussen in den Abschnitt eintreten

« Wenn Prozess k nicht eintreten mochte, dann
werden die Prozesse k + 1 ... nie aktiv

15

Universitat
Bremen

Algorithmus von Peterson

* Prozesse wechseln sich ab * Reihenfolge nach Bedarf

const int process_count = 2;

volatile int turn; // Aktiver Prozess

volatile int interested[process_count] = {false}; // Initialisierung mit false

void enter_critical(int pid) {
int other = 1 - pid;
interested[pid] = true; // Interesse bekunden

turn = other; // Anderer Prozess hat Vorrang

while (interested[other] && turn == other);

void leave_critical(int pid) {
// Signalisiert, dass wir den Bereich verlassen haben
interested[pid] = FALSE;

16

@ Broreen ¢
Test-and-Set Variable

* Prozessorgestutzte Umsetzung
» Assembler CMPXCHG, CMPXCHG8B, CMPXCHG16B

 Assembler-Befehl ist atomar

 CMPXCHG Vergleichswert, Neuer Wert
* eax enthalt Sollwert
» Vergleichswert ist die Sperrvariable

* Prift eax == Vergleichswert

» Setzt neuen Wert bei Gleichheit
» Anderenfalls wird Vergleichswert zurtick gegeben

» Beispiel:
» Wert 0 bedeutet, dass Abschnitt frei ist
* Wert ungleich 0 bedeutet, dass der Abschnitt belegt ist
» Jeder Prozess pruft auf O oder setzt seine ID

17

Universitat
Bremen

Prioritateninversion

» Aktives Warten nutzt offensichtlich CPU-Zeit
» Bei |Aktive Prozesse| > |CPUs| kbnnen Probleme entstehen

« Angenommen |Aktive Prozesse| = 2 und |[CPUs| =1
Angenommen P;hat hohe Prioritat und wartet
Angenommen P, hat niedrige Prioritat und ist in kritischem Abschnitt
Scheduler priorisiert P,und dieser belegt CPU mit aktivem Warten
P, bendtigt langer, weil P; die CPU blockiert

In schlechten Situationen wird P, nicht mehr auf die CPU gelassen

18

Universitat
Bremen

Ringbuffer — Kommunikation

» Zwei Prozesse wollen Daten austauschen

FIFO-Prinzip soll eingehalten werden
Buffer hat beschrankte Grolde
Schreiber wartet aktiv, wenn Buffer voll ist

Leser wartet aktiv, wenn Buffer leer ist

type buffer[n+l];
Buffer leer, wenn rIdx == wIdx

Schreibender Prozess

* Schreib immer buffer [wIdx]

« Setzt anschlieRend wIdx = (wIdx+1) % (n+1)
» Schreibt nur, wenn danach Buffer nicht leer ist

Lesender Prozess

e Liestimmer buffer[rIdx]
« Setzt anschlielRend rIdx = (rIdx+1) % (n+1)
* Liest nur, wenn Buffer nicht leer ist

0 trIdx

thdx n+ 1

19

Universitat
Bremen Lésungen

Non-blocking Write Protocol

» Zwei Prozesse wollen Daten austauschen
* Prozess 1 schreibt nur Daten
* Prozess 2 liest nur Daten
* Nicht alle Daten mussen zugestellt werden

» Schreibender Prozess
« Kann immer schreiben
« Uberschreibt alte Daten

» Lesender Prozess
» Liest nur, wenn der Schreiber nicht schreibt
« Prift nach Abschluss, ob es eine Kollision gab
« Verwirft Daten bei Kollision

Universitat
Bremen

Non-blocking Write Protocol

uintn_t CCF = 03 // Concurrency Control Flag
myType_t a; // Buffer (e.g. structure or array)
// updated by Writer/read by Reader

void writer() {
while (1) {
do_other_things();

CCF++;
write(&a);
CCF++;

void reader () {
int cO, cl;

myType_t b;
while (1) {
do {

do { cO® = CCF; }
while (cO & 1); // Wait until cO is even

b = copy(a);
cl = CCF;
} while (cl != c0O);

process(b);
3
}

21

Universitat
Bremen

Themenubersicht
» Motivation » Aktives Warten Nachweise
» Race Condition » Striktes Abwechseln POSIX-Bibliothek
* Transaktion * Petersons Algorithmus Umsetzung
» Kritische Abschnitte » Test-and-Set Variable
« Race Condition Il » Bewertung
« Race Condition Il » Ringbuffer
* Nicht-blockierendes
Schreiben

Implementierung

Universitat
Bremen

Verifikation von Protokollen

» Korrektheit bisher Uber Intuition
* Intuition haufig nicht ausreichend
Beispiel: Safety-Critical-Systems

* Verifikationsansatze helfen beim Nachweis

?% File Edit View Tools Options Help

= =

= 1

Editor Symbolic Simulator Concrete Simulator

00 10 20 30 40 50 60 70

Verifier

Train(0) —
Train(2) —
Train(3) —
appr[1]: Train(1) — GateG[1]

Simulation Trace

(Safe, Start, Cross, Appr, Idle)

Delay: 3.105562950749905; leave[2]: Train(2) — GateG[2]
(Safe, Start, Safe, Appr, Active)

Delay: 0.0; stop[e]: GateG[2] —

(Safe, Start, Safe, Appr, Idle)

Delay: 0.19518292958983616; appr[0]: Train(0) — GateG[0]
(Appr, Start, Safe, Appr, Active)

Delay: 0.0; gole]: GateG[2] —

(Appr, Start, Safe, Appr, Idle)

Delay: 0.12151472924931145; Train(1) —

(Appr, Cross, Safe, Appr, Idle)

Delay: 3.31096721929498; appr{2]: Train(2) — GateG[2]
(Appr, Cross, Appr, Appr, Active)

e <l

P> Random =} Open

Slow

Expand

train-gate-stratxml - UPPAAL

Qa & o<V

Globals
24 Train(e)
g Train(1)
g Train(2)
g Train(3)
4 6ates

Train(0)

B+1) :NxN

Train(1)

(1+1) :N=N

Train(2)

2+1) NN

Stop

Train(3)

(3+1) :NxN

A~
Train(0) Train(1) Train(2) Train(3) GateG
Active

Safe

23

) ez
UPPAAL

« UPPAAL erlaubt

* Modellierung
. . ?% File Edit View Tools Options Help train-gate-stratxml - UPPAAL - m]
e Simulation Bl aa o<V

Editor Symbolic Simulator ~ Concrete Simulator ~ Verifier

» Verifikation S <

00 10 20 30 40 50 60 70 80 90 >~ Globals % |Train(0) Train(1)

Train(0) — %Tpa%:gg; el e
« Prozesse werden mit Timed-Automata modelliert — trics | |

« Verifikation mit temporaler Logik
« CTL (Computation Tree Logic) , 3

(Safe, Start, Cross, Appr, Idle)

« TCTL (Timed Computation Tree Logic) e e =Gt

Train(2) Train(3)
. . Delay: 0.0; stop[e]: GateG[2] —

« Beschreibung von erwinschtem Programmverhalten s st sy
Delay: 0.19518292958983616; appr[0]: Train(0) — GateG[0]
(Appr, Start, Safe, Appr, Active)
Delay: 0.0; go[e]: GateG[2] —
(Appr, Start, Safe, Appr, Idle)
Delay: 0.12151472924931145; Train(1) — Appr
(Appr, Cross, Safe, Appr, Idle) e
Delay: 3.31096721929498; appr{2]: Train(2) — GateG[2]
(Appr, Cross, Appr, Appr, Active)

2+1) NN (3+1) :NxN

e <l

A~
Train(0) Train(1) Train(2) Train(3) GateG
Active

o Strate »» Random =1 Open B Save Safe
. |
|

Universitat
Bremen

Timed Automata

Prozess entspricht Timed Automata

Bestandteile

 Knoten
 Kanten

Knoten

* |nvariante

* Initial
* Urgent

« Committed

= Startzustand
= Zeit verstreicht nicht
= Zeit verstreicht nicht und

Nachfolgezustand wird sofort betreten

Kanten
» Select
* Guard
* Sync
» Update

= Zufallige Auswahl von Variablenwerten
= Bedingung fur Transistion

= Synchronisation zwischen Automaten
= Aktualisierung von globalen Variablen

X=3
Saf leave[id]! c
afe - ross
@z»‘ X <5
appr[id]!
X=0
X=7
xX=0
Appr Start
X <20 X <15
1 ?
X <10 X id]
stop[id]?
Stop

25

L)
POSIX — Mutex

Mutex fur gegenseitigen Ausschluss
pthread_mutex_init immer verwenden

Mutex sperren
« pthread_mutex_lock
* pthred_mutex_trylock

Mutex freigeben
« pthread_unlock

Mutex loschen

« pthread_mutex_destroy

Rekursive Mutexe moglich

« Mehrfaches sperren in einem Thread moglich
« pthread_mutexattr_t attr;

« pthread_mutexattr_init(&attr);

« pthread_mutexattr_settype(&attr,

PTHREAD_MUTEX_RECURSIVI

« pthread_mutex_init(&mutex, &attr);

#include <pthread.h>

// Initialisierung statischer Variablen
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

int main() {
// Initialisierung von dynamischen Variablen
pthread_mutex_init(&mutex, NULL);

pthread_mutex_lock(&mutex) ;
// kritischer Abschnitt
pthread_mutex_unlock(&mutex) ;

if(pthread_mutex_trylock(&mutex) == 0) {
// kritischer Abschnitt

} else {
// sonstiger Code

}

pthread_mutex_destroy(&mutex) ;

}
26

@ Broreen ¢
POSIX — Read/Write Lock

* Producer/Consumer Szenario
« pthread_rwlock_1init
* pthread_rwlock_destroy
» Leser konnen parallel lesen
« pthread_rwlock_rdlock
* pthread_rwlock_unlock
» Schreiber brauchen exklusiven Zugriff
* pthread_rwlock_wrlock

* pthread_rwlock_unlock

#include <pthread.h>

// Initialisierung statischer Variablen
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

int main() {
// Initialisierung von dynamischen Variablen
pthread_rwlock_init(&rwlock, NULL);

pthread_rwlock_rdlock(&rwlock) ;

// Nur, wenn kein Write Lock aktiv

// Weitere Read Locks werden zugelassen

// Write Locks blockieren

// Alle Read Locks missen freigegeben werden
pthread_rwlock_unlock(&rwlock) ;

pthread_rwlock_wrlock(&rwlock) ;

// Nur erfolgreich, wenn kein Reader oder Schreiber
// Reads und Write Locks blockieren
pthread_rwlock_unlock(&rwlock) ;

pthread_rwlock_destroy (&rwlock) ;

@ Bremen
POSIX — Semaphoren

« Semaphoren-Implementierung
« Bekannt aus Technische Informatik 2

* Beschrankt parallele Prozesse in einem Abschnitt

#include <semaphore.h>

int main() {
sem_t sem;

// Initialisierung: Non-Shared und Wert 5
sem_init(&sem, 0, 5);

// Semaphoren erniedrigen
sem_wait(&sem) ;

// Nicht blockierende Alternative
if(sem_trywait(&sem) == 0) {
}

// Semaphore inkrementieren
sem_post(&sem) ;

// Semaphore zerstoren
sem_destroy (&sem) ;

28

@ Bremen
POSIX — Spinlock

» Spinlock (busy wait) fur kurze kritische Abschnitte

#include <pthread.h>

int main() {
pthread_spinlock_t spinlock;

// Initialisierung
pthread_spin_init(&spinlock, PTHREAD_PROCESS_PRIVATE);

pthread_spin_lock(&spinlock) ;
// Kritischer Abschnitt
pthread_spin_unlock(&spinlock) ;

// Spinlock freigeben
pthread_spin_destroy(&spinlock) ;

29

Universitat
Bremen

Futex — Unterstutzung durch den Kernel

Futex steht fur fast user-space mutex
« Zunachst Sperre uber cmpxchange/test-and-set (User-Space)

» Andernfalls warten Uber futex-Systemaufruf

Effizienter kernel-basierter Locking-Mechanismus

Konnen uber Prozessgrenzen genutzt werden

Machtiges Konzept (aber kompliziert)

Kernel verwaltet
» Warteschlange pro Mutex (futex. c)
« Hashtabelle zur Zuordnung Variable zu Warteschlange

« Warteschlange ist prioritatenbasiert

* Thread wird nur geweckt, wenn er aktiv werden kann

30

Universitat
Bremen

Themenubersicht
» Motivation » Aktives Warten Nachweise
» Race Condition » Striktes Abwechseln POSIX-Bibliothek
* Transaktion * Petersons Algorithmus Umsetzung
» Kritische Abschnitte » Test-and-Set Variable
« Race Condition Il » Bewertung
« Race Condition Il * Ringbuffer
* Nicht-blockierendes
Schreiben

Grundlagen

Losungen Implementierung

