
Dr. Bernhard J. Berger
AG Sichere Systeme

Kritische Abschnitte

Lösungen Implementierung

• Motivation
• Race Condition
• Transaktion
• Kritische Abschnitte
• Race Condition II
• Race Condition III

• Aktives Warten
• Striktes Abwechseln
• Petersons Algorithmus
• Test-and-Set Variable
• Bewertung

• Ringbuffer
• Nicht-blockierendes

Schreiben

• Nachweise
• POSIX-Bibliothek
• Umsetzung

Grundlagen

Themenübersicht

Motivation – Therac-25
• Elektronenlinearbeschleuniger
• Strahlentherapie von Krebstumoren
• Todesfälle in den 1980er auf Grund überhöhter Strahlendosis

Grundlagen Lösungen Kernel

Quelle: https://pvs-studio.com/en/blog/posts/0438/

The technician recalled changing the command 'x' to 'e' that day. It was found that
doing it quickly enough resulted in radiation overdose in almost 100% of cases.

3

Erinnerung – Race Condition
• Szenario: Zwei Personen versuchen gleichzeitig Geld vom gleichen Konto abzuheben.
• Randbedingungen: Der Kontostand darf nicht unter null sinken.

Grundlagen Lösungen Kernel

ATM(P1):

int a = inputAccountNumber();
float x = inputAmount();
float b = getBalance(a);

if (x <= b) {
b = b - x;
setBalance(b);
outputCash(x);

}

ATM(P2):

int a = inputAccountNumber();
float x = inputAmount();
float b = getBalance(a);

if (x <= b) {
b = b - x;
setBalance(b);
outputCash(x);

}

Parallele Ausführung
4

Erinnerung – Race Condition
• Szenario: Zwei Personen versuchen gleichzeitig Geld vom gleichen Konto abzuheben.
• Randbedingungen: Der Kontostand darf nicht unter null sinken.

Grundlagen Lösungen Kernel

ATM(P1):

int a = inputAccountNumber();
float x = inputAmount();
float b = getBalance(a);

if (x <= b) {
b = b - x;
setBalance(b);
outputCash(x);

}

ATM(P2):

int a = inputAccountNumber();
float x = inputAmount();
float b = getBalance(a);

if (x <= b) {
b = b - x;
setBalance(b);
outputCash(x);

}

// x = 20 // x = 50
// b = 100 // b = 100

// 20 <= 100 // 50 <= 100
// b = 80 // b = 50
// Setzt auf 80 // Setzt auf 50

5

Transaktion
• Eine Transaktion ist eine logisch kohärente Sequenz von

Programmanweisungen
• Stammt aus Datenbanken aber wurde in den Bereich der

Betriebssysteme übernommen
• Für eine isolierte Transaktion gibt es üblicherweise die folgenden

Korrektheitsanforderungen:
• Atomizität Eine Transaktion wird gar nicht oder vollständig ausgeführt
• Konsistenz Die Auswirkungen einer Transaktion muss mit konsistent

mit den Daten-Constraints sein
• Isolation Die Auswirkung einer Transaktion darf erst nach Abschluss

sichtbar sein. Zwischenzustände dürfen nicht sichtbar sein.
• Dauerhaftigkeit Der Effekt einer Transaktion muss persistent sein

(auch im Falle eines Hardware-Ausfalls)

Grundlagen Lösungen Kernel

6

Gleichzeitige Transaktionen
Gegeben eine Sammlung von Transaktionen 𝑇!, 𝑇", … , 𝑇# , dann ist
eine gleichzeitige Ausführung 𝑇! ∥ 𝑇" ∥ ⋯ ∥ 𝑇# serialisierbar, wenn
es eine Permutation 𝜋: 1, 2, … , 𝑛 → 1, 2, … 𝑛 gibt, so dass der
Effekt der gleichzeitigen Ausführung die gleiche Auswirkung wie
eine sequentielle Ausführung haben 𝑇$ 1 ; 𝑇$ 2 ; … ; 𝑇$ 𝑛 .

Das Geldabheben aus dem Beispiel verstößt gegen die Serialisier-
barkeitseigenschaft, da es keine Ausführungsreihenfolge gibt, die
das gleiche Ergebnis liefert:

Angenommen Prozess 1 möchte 80€ abheben und Prozess 2
möchte 50€ abheben. In beiden Möglichkeiten wird nur eine Trans-
aktion durchgeführt. Die andere wird abgelehnt.

Grundlagen Lösungen Kernel

7

Kritischer Abschnitt
Ein Code-Abschnitt einer Transaktion, dessen parallele Ausführung
die Serialisierbarkeitseigenschaft verletzt, nennt man einen
kritischen Abschnitt.

Hinweis: Der kritische Abschnitt in nebenläufigen Transaktionen
kann unterschiedliche Code-Abschnitte enthalten.

Beispiel: Eine Transaktion führt eine Abhebung, während eine
andere Transaktion eine Geldeinzahlung durchführt.

Grundlagen Lösungen Kernel

8

Kritischer Abschnitt – Beispiel
Grundlagen Lösungen Kernel

ATM(P1):

int a = inputAccountNumber();
float x = inputAmount();
float b = getBalance(a);

if (x <= b) {
b = b - x;
setBalance(b);
outputCash(x);

}

ATM(P2);

int a = inputAccountNumber()
float c = inputCash();
float b = getBalance(a);

b = b + c;
setBalance(b);

Kritischer AbschnittParallele Ausführung
9

Race Conditions – Beispiel
Grundlagen Lösungen Kernel

long long z;

P1:

long long foo = 1ll << 32;

z = foo;

P2:

long long bar = 1ll;

z = bar;
Kritischer AbschnittParallele Ausführung

• Szenario: Nicht-atomarer schreibender Zugriff auf den Speicher.
• Randbedingungen: Auf einer 32-Bit-Architektur braucht das Schreiben eines 64-Bit Integer zwei

Taktzyklen.

10

Race Conditions – Beispiel
Grundlagen Lösungen Kernel

long long z;

P1:

long long foo = 1ll << 32;

z = foo;

P2:

long long bar = 1ll;

z = bar;
Kritischer AbschnittParallele Ausführung

1 0foo
Bit 0 -> 31Bit 63 -> 32

0 1bar
Bit 0 -> 31Bit 63 -> 32

z
Bit 0 -> 31Bit 63 -> 32

0 01 1
Diese nebenläufige Transaktionen
sind nicht serialisierbar, da die
serielle Ausführung in 𝑧 = 1, 0
oder 𝑧 = 0, 1 	endet

11

Kritischer Abschnitt – Beispiel
Grundlagen Lösungen Kernel

int myStack[MAX];
size_t s = 0;

while (1) {

myStack[s] = produce();
s = s + 1;

}

while (1) {
if (s > 0) {
s = s - 1;
int x = myStack[s];
consume(x);

}
}

Kritischer AbschnittParallele Ausführung
12

Grundlagen

Themenübersicht

Lösungen Implementierung

• Motivation
• Race Condition
• Transaktion
• Kritische Abschnitte
• Race Condition II
• Race Condition III

• Aktives Warten
• Striktes Abwechseln
• Petersons Algorithmus
• Test-and-Set Variable
• Bewertung

• Ringbuffer
• Nicht-blockierendes

Schreiben

• Nachweise
• POSIX-Bibliothek
• Umsetzung

Aktives Warten
void enter_critical(int pid) {

while (<condition for entering CS not fulfilled>);
// now CS can be entered

}

void leave_critical(int pid) {
<reset condition variables to indicate that CS has been left>;

}

Aktives Warten führt eine Schleife aus, bis eine Bedingung zum Betreten des kritischen Abschnitts erfüllt
ist. Beim Betreten wird sichergestellt, dass die Bedingung nicht mehr hält und beim Verlassen muss die Be-
dingung wieder hergestellt werden.

enter_critical(pid);
// kritischer Abschnitt
leave_critical(pid);

Grundlagen Lösungen Kernel

14

Striktes Abwechseln
• Prozesse wechseln sich ab

• Reihenfolge strikt vorgegeben

• Prozesseanzahl festgelegt

const int process_count = ...;
int turn = 0;

void enter_critical(int pid) {
while(turn != pid);

}

void leave_critical(int pid) {
turn = (turn + 1) % process_count;

}

Grundlagen Lösungen Kernel

• Verfahren ist eher akademischer Natur

• Alle Prozesse müssen in den Abschnitt eintreten

• Wenn Prozess 𝑘 nicht eintreten möchte, dann
werden die Prozesse 𝑘 + 1… nie aktiv

15

Algorithmus von Peterson
• Prozesse wechseln sich ab
const int process_count = 2;

volatile int turn; // Aktiver Prozess
volatile int interested[process_count] = {false}; // Initialisierung mit false

void enter_critical(int pid) {
int other = 1 - pid;
interested[pid] = true; // Interesse bekunden
turn = other; // Anderer Prozess hat Vorrang

while (interested[other] && turn == other);
}

void leave_critical(int pid) {
// Signalisiert, dass wir den Bereich verlassen haben
interested[pid] = FALSE;

}

Grundlagen Lösungen Kernel

• Reihenfolge nach Bedarf

16

Test-and-Set Variable
• Prozessorgestützte Umsetzung

• Assembler CMPXCHG, CMPXCHG8B, CMPXCHG16B

• Assembler-Befehl ist atomar
• CMPXCHG Vergleichswert, Neuer Wert

• eax enthält Sollwert
• Vergleichswert ist die Sperrvariable
• Prüft eax == Vergleichswert
• Setzt neuen Wert bei Gleichheit
• Anderenfalls wird Vergleichswert zurück gegeben

• Beispiel:
• Wert 0 bedeutet, dass Abschnitt frei ist
• Wert ungleich 0 bedeutet, dass der Abschnitt belegt ist
• Jeder Prozess prüft auf 0 oder setzt seine ID

Grundlagen Lösungen Kernel

17

Prioritäteninversion
• Aktives Warten nutzt offensichtlich CPU-Zeit

• Bei 𝐴𝑘𝑡𝑖𝑣𝑒	𝑃𝑟𝑜𝑧𝑒𝑠𝑠𝑒 > |𝐶𝑃𝑈𝑠| können Probleme entstehen

• Angenommen 𝐴𝑘𝑡𝑖𝑣𝑒	𝑃𝑟𝑜𝑧𝑒𝑠𝑠𝑒 = 2 und 𝐶𝑃𝑈𝑠 = 1
• Angenommen 𝑃!hat hohe Priorität und wartet
• Angenommen 𝑃" hat niedrige Priorität und ist in kritischem Abschnitt
• Scheduler priorisiert 𝑃!und dieser belegt CPU mit aktivem Warten
• 𝑃" benötigt länger, weil 𝑃! die CPU blockiert
• In schlechten Situationen wird 𝑃" nicht mehr auf die CPU gelassen

Grundlagen Lösungen Kernel

18

Ringbuffer – Kommunikation
• Zwei Prozesse wollen Daten austauschen

• FIFO-Prinzip soll eingehalten werden

• Buffer hat beschränkte Größe
• Schreiber wartet aktiv, wenn Buffer voll ist

• Leser wartet aktiv, wenn Buffer leer ist

Grundlagen Lösungen Kernel

0 n + 1rIdx wIdx

• type buffer[n+1];

• Buffer leer, wenn rIdx == wIdx

• Schreibender Prozess
• Schreib immer buffer[wIdx]
• Setzt anschließend wIdx = (wIdx+1) % (n+1)
• Schreibt nur, wenn danach Buffer nicht leer ist

• Lesender Prozess
• Liest immer buffer[rIdx]
• Setzt anschließend rIdx = (rIdx+1) % (n+1)
• Liest nur, wenn Buffer nicht leer ist

19

Non-blocking Write Protocol
• Zwei Prozesse wollen Daten austauschen

• Prozess 1 schreibt nur Daten
• Prozess 2 liest nur Daten
• Nicht alle Daten müssen zugestellt werden

• Schreibender Prozess
• Kann immer schreiben
• Überschreibt alte Daten

• Lesender Prozess
• Liest nur, wenn der Schreiber nicht schreibt
• Prüft nach Abschluss, ob es eine Kollision gab
• Verwirft Daten bei Kollision

Grundlagen Lösungen Kernel

20

Non-blocking Write Protocol
uintn_t CCF = 0; // Concurrency Control Flag
myType_t a; // Buffer (e.g. structure or array)

// updated by Writer/read by Reader

void writer() {
while (1) {

do_other_things();

CCF++;
write(&a);
CCF++;

}
}

Grundlagen Lösungen Kernel

void reader() {
int c0, c1;
myType_t b;

while (1) {
do {
do { c0 = CCF; }
while (c0 & 1); // Wait until c0 is even

b = copy(a);
c1 = CCF;

} while (c1 != c0);

process(b);
}

}

21

Grundlagen

Themenübersicht

Lösungen Implementierung

• Motivation
• Race Condition
• Transaktion
• Kritische Abschnitte
• Race Condition II
• Race Condition III

• Aktives Warten
• Striktes Abwechseln
• Petersons Algorithmus
• Test-and-Set Variable
• Bewertung

• Ringbuffer
• Nicht-blockierendes

Schreiben

• Nachweise
• POSIX-Bibliothek
• Umsetzung

Verifikation von Protokollen
• Korrektheit bisher über Intuition

• Intuition häufig nicht ausreichend

 Beispiel: Safety-Critical-Systems
• Verifikationsansätze helfen beim Nachweis

Grundlagen Lösungen Implementierung

23

UPPAAL
• UPPAAL erlaubt

• Modellierung
• Simulation
• Verifikation

• Prozesse werden mit Timed-Automata modelliert
• Verifikation mit temporaler Logik

• CTL (Computation Tree Logic)
• TCTL (Timed Computation Tree Logic)
• Beschreibung von erwünschtem Programmverhalten

Grundlagen Lösungen Implementierung

24

Timed Automata
• Prozess entspricht Timed Automata

• Bestandteile
• Knoten
• Kanten

• Knoten
• Invariante
• Initial ⇒ Startzustand
• Urgent ⇒ Zeit verstreicht nicht
• Committed ⇒ Zeit verstreicht nicht und

Nachfolgezustand wird sofort betreten

• Kanten
• Select ⇒ Zufällige Auswahl von Variablenwerten
• Guard ⇒ Bedingung für Transistion
• Sync ⇒ Synchronisation zwischen Automaten
• Update ⇒ Aktualisierung von globalen Variablen

Grundlagen Lösungen Implementierung

25

POSIX – Mutex
• Mutex für gegenseitigen Ausschluss

• pthread_mutex_init immer verwenden

• Mutex sperren
• pthread_mutex_lock
• pthred_mutex_trylock

• Mutex freigeben
• pthread_unlock

• Mutex löschen
• pthread_mutex_destroy

• Rekursive Mutexe möglich
• Mehrfaches sperren in einem Thread möglich
• pthread_mutexattr_t attr;
• pthread_mutexattr_init(&attr);
• pthread_mutexattr_settype(&attr,
 PTHREAD_MUTEX_RECURSIVE);
• pthread_mutex_init(&mutex, &attr);

Grundlagen Lösungen Implementierung

26

POSIX – Read/Write Lock
• Producer/Consumer Szenario

• pthread_rwlock_init

• pthread_rwlock_destroy

• Leser können parallel lesen
• pthread_rwlock_rdlock

• pthread_rwlock_unlock

• Schreiber brauchen exklusiven Zugriff
• pthread_rwlock_wrlock

• pthread_rwlock_unlock

Grundlagen Lösungen Implementierung

27

POSIX – Semaphoren
• Semaphoren-Implementierung

• Bekannt aus Technische Informatik 2

• Beschränkt parallele Prozesse in einem Abschnitt

Grundlagen Lösungen Implementierung

28

POSIX – Spinlock
• Spinlock (busy wait) für kurze kritische Abschnitte

Grundlagen Lösungen Implementierung

29

Futex – Unterstützung durch den Kernel
• Futex steht für fast user-space mutex

• Zunächst Sperre über cmpxchange/test-and-set (User-Space)

• Andernfalls warten über futex-Systemaufruf

• Effizienter kernel-basierter Locking-Mechanismus

• Können über Prozessgrenzen genutzt werden
• Mächtiges Konzept (aber kompliziert)

• Kernel verwaltet
• Warteschlange pro Mutex (futex.c)

• Hashtabelle zur Zuordnung Variable zu Warteschlange

• Warteschlange ist prioritätenbasiert

• Thread wird nur geweckt, wenn er aktiv werden kann

Grundlagen Lösungen Implementierung

30

Grundlagen

Themenübersicht

Lösungen Implementierung

• Motivation
• Race Condition
• Transaktion
• Kritische Abschnitte
• Race Condition II
• Race Condition III

• Aktives Warten
• Striktes Abwechseln
• Petersons Algorithmus
• Test-and-Set Variable
• Bewertung

• Ringbuffer
• Nicht-blockierendes

Schreiben

• Nachweise
• POSIX-Bibliothek
• Umsetzung

