Betriebssysteme

Dateisysteme

BunuaisijenuIA — 80

Icht

Themenubers

Universitat
Bremen

Anwendungen

U

wajsAsiaje(
SOJISNMIA — L0

awe)sAsiayeq — 10

Bunjjemianiaysiadsg — Go

spealy]l pun 9ss9zoid — 20

04 — Scheduler

sjdn.iaju] pun ajniynewa)sAs — €0

8IUYOSqY 8YISHY — 90

Betriebssystem

Hardware

Universitat
Bremen

Themenubersicht

« FS als API
« Terminologie
« Management

Grundlagen

« Grundidee
* API-Typen
» Laufzeitsicht
» Dateisysteme registrieren
» Strukturen
— Superblock
—Inode
— Dentry
— File

Minix
FAT-Dateisysteme
ext-Dateisysteme
Journaling

Extents
Copy-On-Write

Universitat
Bremen

Dateisystem als AP

Dateisystem

« Hierarchische Organisationsstruktur fur Dateien auf Datenspeichern
« Dateien sind zusammengehorende Dateninhalte /
Dateisystem verwaltet
« Dateinamen

Wurzelverzeichnis

« Attribute (Metadaten) Benutzerverzeichnis
. . A B Cle——
« Dateisystem dient als
* API des Betriebssystems
« Dateinamen als Schnittstelle Datei
« Wichtige Eigenschaften Al A) [A 9 B C

. Geschwindigkeit A
» Geringer Verschnitt

Unterverzeichnis
(A &) B®) [C] [Cle—

Dateien

Universitat
Bremen

Hardware

« Dateisysteme adressieren Cluster
« Jede Datei belegt eine ganzzahlige Menge an Clustern
« Alternativbegriffe: Zonen oder Blocke
« Achtung: Sektoren von Festplatten werden auch manchmal Blocke genannt

* GrolRe der Cluster
« Abhangig vom Dateisystem und von Konfiguration

« Beeinflusst Effizienz des Dateisystems
» Steigender Verwaltungsaufwand fur grof3e Dateien
« Abnehmender Kapazitatsverlust durch interne Fragmentierung

« Wird beim Anlegen des Dateisystems festgelegt

Hinweis

Unter Linux wird empfohlen die Page-Size des Speichers bei der Wahl der Clustergrol3e zu
berucksichtigen, damit Cluster effizient in den Speicher abgebildet werden kdnnen.

Universitat
Bremen

Kommandos

« Verwalten von Dateisystemen (Kommandozeile)
* mount [-t fs-type -0 options] <device> <mount point>
e umount <mount point>
* mkfs.xxx
« fsck.xxx

» Beispiel zum Anlegen und Einbinden

Terminal

dd if=/dev/zero of=1loop_fs.img bs=1M count=100
mkfs.ext2 loop_fs.img

mkdir /mnt/my-fs

mount -o loop loop_fs.img /mnt/my-fs

V V V V

> umount /mnt/my-fs/

Universitat
Bremen

U

Linux-Dateisysteme

Dateien und Verzeichnisse werden als Inode
(Index Node) abgelegt

Inode ...
« ... enthalt Metadaten
» DateigrolRe
« UID/GID

« Zugriffsrechte
« Zugriffsdatum
* ... hat eine eindeutige Inode-Nummer

Datei-Inode verweist auf Cluster mit
Dateiinhalt

Verzeichnis-lnode enthalt Namen und Inode-
Nummern fur Verzeichnisinhalt

ext2/ext3 Beispiel

Dateiname | Inode ——>| Dateityp
Dateiname | Inode Zugriffsrechte
Dateiname | Inode Besitzer
Dateiname | Inode GroRke
L L. Datum
Gruppe
Verzeichnis Anzahl der Links

Anzahl der Sektoren

Clusteradresse 1 (direkt)

Clusteradresse 12 (direkt)

Clusteradresse 13 (indirekt)

Clusteradresse 15 (dreifach indirekt)

Inode

Universitat
Bremen

Beispiel ext2/ext3

Clusternummern
(Daten der Datei)

N
: 1 |
:l LRC
y o ' 12 Cluster
> 12 i
> 13

Dateiname | Inode »| Dateityp
Dateiname | Inode Zugriffsrechte
Dateiname | Inode Besitzer
Dateiname | Inode Grolle
L) LI Datum
Gruppe
Verzeichnis Anzahl der Links
Anzahl der Sektoren
Clusteradresse 1 (direkt)
Clusteradresse 12 (direkt)
Clusteradresse 13 (indirekt) ;!' 1 !'
| Clusteradresse 15 (dreifach indirekt) |: 256

256 Cluster

Inode

StandardgroRe bei ext2: 128 Bytes
StandardgrofRe bei ext3/4: 256 Bytes

ext2/3 verwenden 32-Bit Cluster-Nummern
ext4 verwendet 48-Bit Cluster-Nummern

ClustergrofRe: 1 kB
Ein Cluster kann 256 Adressen der Lange 4 Byte (32 Bit) enthalten
Maximale DateigroRe: 16 GB

Y

256

YvY

Y

65536 Cluster

16777216 Cluster

16777485

T6843020]

Universitat
Bremen

Themenubersicht

« FS als API
« Terminologie
« Management

» Grundidee
* API-Typen
» Laufzeitsicht
» Dateisysteme registrieren
» Strukturen
— Superblock
—Inode
— Dentry
— File

Minix
FAT-Dateisysteme
ext-Dateisysteme
Journaling
Extents
Copy-On-Write

Universitat
Bremen

Grundidee

Linux VFS verwendet Objektorientierung (in C)

Betriebssystem bietet Systemaufrufe an
* open, close
* read, write
* Iseek, unlink, mkdir, rmdir, readdir Kernel Space

User Space

Systemaufrufe sind generisch umgesetzt

» Operieren auf generischen Datenstrukturen

* Fuhren grundlegende Buchfluhrung durch

* Verwedendet dateisystemspezifische Funktionen

Linux bietet eine einfache Mdglichkeit neue
Dateisysteme zu implementieren.

« Kernelmodul erstellen

* Funktionen implementieren

« Dateisystem registrieren

Details
https://git.fh-aachen.de/tb3838s/linux/-/blob/master/Documentation/filesystems/vfs.rst

@ Bremen
API-Typen

VFS-Elemente: Insgesamt gibt es vier Objekte, die das VFS zur Verfugung stellt:
1. Superblock-Objekt Ein eingebundenes Dateisystem. Erlaubt das Einbinden und Aushangen.

2. Inode-Objekt Eine konkrete Datei im Dateisystem. Stellt Funktionen zum Anlegen, Loschen, Umbenennen usw.
zur Verfugung.

3. Dentry-Objekt Ein Verzeichniseintrag (Datei oder Verzeichnis) und zugehaorige Verzeichnisoperationen, wie
Dateinamenvergleich, aushangen aus dem Dateisystembaum

4. File-Objekt Stellt eine offene Datei dar und stellt alle dateibezogenen Operationen wie Lesen und Schreiben zur
Verfugung

11

Universitat
Bremen

Laufzeitsicht

Liste offener Dateien in Prozesstabelleneintrag

Gedffnete Datei verweist auf dentry-Eintrag ProcessTable Process1 | Process2 Process3

Dentry-Eintrag referenziert inodes der Datei

Indode ordnet auf echtes Hardwaregerat zu
Alle Strukturen sind VFS-Elemente

[]
Virtual File System (VFS)

Filesystem

Table

-

Storage Device (USB) Storage Device (Disk Drive)

e
/

https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour

12

Universitat
Bremen

Dateisystem registrieren — Kernelmodul

#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

#include <linux/fs.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bernhard J. Berger <berber@tzi.de>");
MODULE_DESCRIPTION("Simple filesystem for the lecture operating systems");

// Forward declaration section
struct dentry *bsfs_mount (struct file_system_type *type, int flags,
const char *name, void *ptr);

const struct file_system_type bsfs = {
.owner = THIS_MODULE,
.name = '"bsfs",
.mount = bsfs_mount,
kill_sb = kill_litter_super
}s

13

Universitat
Bremen

Dateisystem registrieren — Kernelmodul

static int __init module_start(void) {
printk (KERN_INFO "Registering filesystem BSFS!\n");
return register_filesystem(&bsfs);

}

static void __exit module_end(void) {
printk (KERN_INFO "Unregistering filesystem BSFS!\n");
unregister_filesystem(&bsfs);

}

struct dentry xbsfs_mount (struct file_system_type *type, int flags,
const char *name, void #*ptr) {
return NULL; // Implementierung erganzen

}

module_init(module_start);
module_exit(module_end);

Universitat
Bremen

Der Superblock — include/linux/fs.h

» Datenstruktur struct super_block
* Definiert in include/linux/fs.h
» Linux/Unix-spezifische Sicht auf das physische
Dateisystem
* Implementierung muss zwischen Linux und
physischer Sicht vermitteln

struct super_block {

struct Llist_head s_list;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct file_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations xdq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

15

Universitat
Bremen

Der Superblock — include/linux/fs.h

Liste der eingebundenen Dateisysteme (werden
durch ihren Superblock reprasentiert)

struct super_block {

struct list_head s_l1ist;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct file_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations xdq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

16

Universitat
Bremen

Der Superblock — include/linux/fs.h

Verweis auf das unterliegende Gerat

struct super_block {

struct Llist head s_list;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct file_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations xdq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

17

Universitat
Bremen

Der Superblock — include/linux/fs.h

Informationen Uber die Grofle des physikalischen
Dateisystems.

struct super_block {

struct Llist_head s_list;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct Ti1le_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations xdq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

Universitat
Bremen

Der Superblock — include/linux/fs.h

Zeiger auf die Superblock-Operationen
Registrierung des Dateisystems).

(siehe

struct super_block {

struct Llist_head s_list;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct file_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations xdq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

19

Universitat
Bremen

Der Superblock — include/linux/fs.h

Operationen fur den Superblock

struct super_block {

struct Llist_head s_list;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct file_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations *dq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

20

Universitat
Bremen

Der Superblock — include/linux/fs.h

Zeiger auf das Wurzelverzeichnis des Dateisystems

struct super_block {

struct Llist_head s_list;

dev_t s_dev;

unsigned char s_blocksize_bits;

unsigned long s_blocksize;

loff_t s_maxbytes;

struct file_system_type *s_type;

const struct super_operations *s_op;

const struct dquot_operations xdq_op;

const struct quotactl_ops *s_qcop;

const struct export_operations
*S_export_op;

unsigned long s_flags;

unsigned long s_magic;

struct dentry *s_root;

struct rw_semaphore s_umount;

21

Universitat
Bremen

Der Superblock — include/linux/fs.h

Liste aller geladenen inode-Strukturen

struct super_block {

struct
struct
struct
struct
struct
struct

struct
struct

list_head s_inodes;
hlist_bl_head s_anon;
Llist_head s_files;
Llist_head s_mounts;

block_device *s_bdev;
backing_dev_info *s_bdi;
mtd_info *s_mtd;
hlist_node s_instances;

22

Universitat
Bremen

Der Superblock — include/linux/fs.h

Liste aller offenen Dateieintrage

struct super_block {

struct
struct
struct
struct
struct
struct

struct
struct

list_head s_inodes;
hlist_bl_head s_anon;
list_head s_files;
Llist_head s_mounts;

block_device *s_bdev;
backing_dev_info *s_bdi;
mtd_info *s_mtd;
hlist_node s_instances;

23

Universitat
Bremen

Der Superblock — include/linux/fs.h

Zugehoriges Block-Gerat

struct super_block {

struct
struct
struct
struct
struct
struct

struct
struct

list_head s_inodes;
hlist_bl_head s_anon;
Llist_head s_files;
Llist_head s_mounts;

block_device *s_bdev;
backing_dev_info *s_bdi;
mtd_info *s_mtd;
hlist_node s_instances;

24

@ Bremen
Die Superblock-Operationen — include/linux/fs.h

struct super_operations {
o2 - - struct inode x(*xalloc_1inode) (struct super_block *sb);
Anlegen und Zerstoren einer inode verlel (reestrey. S nete) (Stes e) s
void (*dirty_inode) (struct 1node *, int flags);
int (xwrite_inode) (struct inode x,
struct writeback_control *wbc);
int (xdrop_inode) (struct inode x);
void (*evict_inode) (struct inode x*);
void (*put_super) (struct super_block x*);
int (*sync_fs) (struct super_block #*sb, 1int wait);
int (xfreeze_fs) (struct super_block *);
int (xunfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *x, struct kstatfs x);
int (*remount_fs) (struct super_block *, int x, char *);
void (*umount_begin) (struct super_block x);

25

@ Bremen
Die Superblock-Operationen — include/linux/fs.h

struct super_operations {
struct inode x(*xalloc_inode) (struct super_block *sb);
void (*xdestroy_inode) (struct inode x*);

Inode als geandert markieren. Wird void (*dirty_tinode) (struct inode %, 1int flags);

. . : s int (xwrite_inode) (struct inode x*,
fur spezielle Operationen benotigt. struct writeback control *wbc);

int (xdrop_inode) (struct inode x);

void (*evict_inode) (struct inode x*);

void (*put_super) (struct super_block x*);

int (*sync_fs) (struct super_block #*sb, 1int wait);

int (xfreeze_fs) (struct super_block *);

int (xunfreeze_fs) (struct super_block *);

int (*statfs) (struct dentry *x, struct kstatfs x);

int (*remount_fs) (struct super_block *, int x, char *);
void (*umount_begin) (struct super_block x);

26

@ Bremen
Die Superblock-Operationen — include/linux/fs.h

struct super_operations {
struct inode x(*xalloc_inode) (struct super_block *sb);
void (*destroy_inode) (struct inode x*);
void (*dirty_inode) (struct inode *, int flags);
Schreiben und Léschen einer inode [1nt (xwrite_inode) (struct inode %,

f/ hvsisch Gerit struct writeback_control *wbc);
aut/von pnhysischem era int (*drop_inode) (struct inode x);

void (*evict_inode) (struct inode x*);

void (*put_super) (struct super_block x*);

int (*sync_fs) (struct super_block #*sb, 1int wait);

int (xfreeze_fs) (struct super_block *);

int (xunfreeze_fs) (struct super_block *);

int (*statfs) (struct dentry *x, struct kstatfs x);

int (*remount_fs) (struct super_block *, int x, char *);
void (*umount_begin) (struct super_block x);

27

@ Bremen
Die Superblock-Operationen — include/linux/fs.h

struct super_operations {
struct inode x(*xalloc_inode) (struct super_block *sb);
void (*destroy_inode) (struct inode x*);
void (*dirty_inode) (struct inode *, int flags);
int (xwrite_inode) (struct inode x,
struct writeback_control *wbc);
int (xdrop_inode) (struct inode x);
void (*evict_inode) (struct inode x*);
Superblock freigeben (bei unmount) void (*put_super) (struct super_block x); :
int (*sync_fs) (struct super_block *sb, int wait);
int (xfreeze_fs) (struct super_block *);
int (xunfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *x, struct kstatfs x);
int (*remount_fs) (struct super_block *, int x, char *);
void (*umount_begin) (struct super_block x);

28

@ Bremen
Die Superblock-Operationen — include/linux/fs.h

struct super_operations {
struct inode x(*xalloc_inode) (struct super_block *sb);
void (*destroy_inode) (struct inode x*);
void (*dirty_inode) (struct inode *, int flags);
int (xwrite_inode) (struct inode x,
struct writeback_control *wbc);
int (xdrop_inode) (struct inode x);
void (*evict_inode) (struct inode x*);
Metadaten des Dateisystems auf das void (xput_super) (struct super_block x);

: . - int (x*sync_fs) (struct super_block xsb, int wait);
physische Gerat schreiben. int (*xfreeze_fs) (struct super_block ;); ’

int (xunfreeze_fs) (struct super_block *);

int (*statfs) (struct dentry *x, struct kstatfs x);

int (*remount_fs) (struct super_block *, int x, char *);
void (*umount_begin) (struct super_block x);

29

Universitat
Bremen Grundlagen

Die inode — include/linux/fs.h

struct 1node

Berechtigungsinformationen

struct posix_acl *1_ac

struct posix_acl =*1i default acl;
const struct 1node_operat1ons *1_op;
struct super_block *i_sb;

struct address_space *i_mapping;
dev_t 1i_rdev;

loff_t i_s1ize;

Dateisysteme

30

Universitat
Bremen

Die inode — include/linux/fs.h

struct 1node {
umode_t 1_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
: : : struct posix_acl *i_acl;
Zugriffskontrollinformationen struct posix acl xi_default_acl;
const struct Tnode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
dev_t 1i_rdev;
loff_t i_size;

31

@ Branon &t
Die inode — include/linux/fs.h

struct 1node {

umode_t 1_mode;

unsigned short i_opflags;

kuid_t i_uid;

kgid_t i_gid;

unsigned int i_flags;

struct posix_acl *i_acl;

struct posix_acl xi_default_acl;
Inode bezogene Operationen const struct inode_operations *i_op;

struct super_block *1_sb;

struct address_space *i_mapping;

dev_t 1i_rdev;

loff_t i_size;

32

Universitat
Bremen

Die inode — include/linux/fs.h

struct 1node {
umode_t 1_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
struct posix_acl *i_acl;
struct posix_acl xi_default_acl;
const struct inode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
dev_t 1i_rdev;
Aktuelle DateigroRRe loff_t i_size;

33

Universitat
Bremen

Die inode — include/linux/fs.h

Anzahl an Bytes im letzten Block

struct 1node {

unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node 1i_hash;
struct Llist_head i_wb_1list;
struct Llist_head i_lru;
struct Llist_head 1i_sb_1list;
union {
struct hlist_head d_dentry;
struct rcu_head 1i_rcu;
I
u4 1i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop;

struct list_head 1i_devices;

union {
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

s

34

Universitat
Bremen

Die inode — include/linux/fs.h

Anzahl an Blocken

struct 1node {

unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node 1_hash;
struct Llist_head i_wb_1list;
struct Llist_head i_lru;
struct Llist_head 1i_sb_1list;
union {
struct hlist_head d_dentry;
struct rcu_head 1i_rcu;
I
u4 1i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop;

struct list_head 1i_devices;

union {
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

s

35

Universitat
Bremen

Die inode — include/linux/fs.h

Liste von LRU-Seiten, die Blocke der
Datei cachen

struct 1node {

unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node 1i_hash;
struct Llist head i_wb_1list;
struct list_head 1i_1lru;
struct Llist_head 1i_sb_1list;
union {
struct hlist_head d_dentry;
struct rcu_head 1i_rcu;
I
u4 1i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop;

struct list_head 1i_devices;

union {
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

s

36

Universitat
Bremen

Die inode — include/linux/fs.h

Dateioperationen

struct 1node {

unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node 1i_hash;
struct Llist_head i_wb_1list;
struct Llist_head i_lru;
struct Llist_head 1i_sb_1list;
union {
struct hlist_head d_dentry;
struct rcu_head 1i_rcu;
b
u4 1i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *xi_fop;

struct list_head 1i_devices;

union {
struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

s

37

@ Bremen
Die inode Operationen — include/linux/fs.h

struct inode_operations {
]]] struct dentry x (*lookup) (struct inode *,

Sucht file-Eintrag im angegebenen struct dentry *,

Verzeichnis unsigned int);
void * (*follow_1link) (struct dentry x, struct nameidata *);
int (*permission) (struct inode *, int);
struct posix_acl * (*xget_acl)(struct inode *, int);
int (*readlink) (struct dentry *, char __user *,int);
void (*xput_1link) (struct dentry *, struct nameidata *, void *);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*¥link) (struct dentry *,struct inode x,struct dentry x);
int (*xunlink) (struct inode *,struct dentry x);
int (*symlink) (struct inode *,struct dentry *,const char x);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*¥rmdir) (struct inode *,struct dentry x);

38

@ Bremen
Die inode Operationen — include/linux/fs.h

struct inode_operations {
struct dentry * (xlookup) (struct inode *,
struct dentry =,
unsigned int);
void * (*follow_1link) (struct dentry x, struct nameidata x*);
. : int (*permission) (struct inode *, int);
Gibt ACL-Informationen der Inode struct posix_acl * (*xget_acl) (strl,Jct inéde x, int);
zuruck. int (*readlink) (struct dentry *, char __user *,int);
void (xput_T1link) (struct dentry x, struct nameidata *, void x*);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (xlink) (struct dentry x,struct inode *,struct dentry x);
int (xunlink) (struct inode *,struct dentry x);
int (x*symlink) (struct inode *,struct dentry x,const char x);
int (xmkdir) (struct inode *,struct dentry *,umode_t);
int (xrmdir) (struct inode *,struct dentry *);

39

@ Bremen
Die inode Operationen — include/linux/fs.h

struct inode_operations {
struct dentry x (*lookup) (struct inode %,
struct dentry =,
unsigned int);
void * (*follow_1link) (struct dentry x, struct nameidata *);
int (*permission) (struct inode *, int);
struct posix_acl * (*xget_acl)(struct inode *, int);
] . int (*readlink) (struct dentry *, char __user *,int);
Erzeugt eine neue Inode in dem yoid (xput_link) (struct dentry %, struct nameidata *, void *);
angegebenen Ordner. Die uber- int E*irei‘)ce)((struct inode *,struct dentry *, umode_t, boo});
. .- int (xlin struct dentry *,struct 1node *x,struct dentry x);
gebene Inode wird gefullt. int (*xunlink) (struct inode *,struct dentry x);
int (*symlink) (struct inode *,struct dentry *,const char x);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*¥rmdir) (struct inode *,struct dentry x);

40

@ Bremen
Die inode Operationen — include/linux/fs.h

struct inode_operations {
struct dentry x (*lookup) (struct inode %,
struct dentry =,
unsigned int);
void * (*follow_1link) (struct dentry x, struct nameidata x*);
int (*permission) (struct inode *, int);
struct posix_acl * (*xget_acl)(struct inode *, int);
int (*readlink) (struct dentry *, char __user *,int);
void (*xput_1link) (struct dentry *, struct nameidata *, void *);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (xlink) (struct dentry *x,struct inode x,struct dentry x);
Hangt die Ubergebene Inode aus. int (xunlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char x);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*¥rmdir) (struct inode *,struct dentry x);

41

Universitat
Bremen

Die inode Operationen — include/linux/fs.h

Erzeugt und offnet eine Datei

struct inode_operations {

int (*xrename) (struct inode *, struct dentry =,
struct inode *, struct dentry x);
int (*setattr) (struct dentry *, struct iattr *);
int (xgetattr) (struct vfsmount *mnt, struct dentry *,
struct kstat *);
int (*setxattr) (struct dentry %, const char x,
const void *,size_t,int);
ssize_t (*getxattr) (struct dentry %, const char *,
void *, size_t);
ssize_t (*listxattr) (struct dentry x, char x, size_t);
int (*removexattr) (struct dentry x, const char x);
int (xfiemap) (struct inode *, struct fiemap_extent_info *,
u64 start, u64 len);
int (*update_time) (struct inode *, struct timespec *, 1int);
int (xatomic_open) (struct inode *, struct dentry x,
struct file *, unsigned open_flag,
umode_t create_mode, int *opened);

42

@ Bremen |
Das dentry Objekt — include/linux/dcache.h

struct dentry {
unsigned int d_flags;
seqcount_t d_seq;
struct hlist_bl_node d_hash;
struct dentry *d_parent;
struct gstr d_name;
Die Inode, die diesen dentry darstellt struct inode xd_inode;
unsigned char d_iname[DNAME_INLINE_LEN];
unsigned int d_count;
spinlock_t d_lock;
const struct dentry_operations *d_op;
struct super_block xd_sb;

@ Bremen |
Das dentry Objekt — include/linux/dcache.h

struct dentry {
unsigned int d_flags;
seqcount_t d_seq;
struct hlist_bl_node d_hash;
struct dentry *d_parent;
struct gstr d_name;
struct inode *d_inode;
unsigned char d_iname[DNAME_INLINE_LEN];
unsigned int d_count;
spinlock_t d_lock;

Operatignen fir den dentry const struct dentry_operations xd_op;
struct super_block xd_sb;

Universitat
' U ' Bremen Grundlagen VFS Dateisysteme

Das dentry Operationen — include/linux/dcache.h

struct dentry_operations {

int (xd_revalidate) (struct dentry *, unsigned 1int);

int (xd_weak_revalidate) (struct dentry *, unsigned int);
int (*d_hash) (const struct dentry x,

const struct inode x*,
struct gstr *x);

Vergleiche zwei Verzeichniseintrage
anhand ihres Namens.

_delete) (const struc entry x*
void (*d_release) (struct dentry *);
void (xd_prune) (struct dentry x*);
void (*xd_iput) (struct dentry x, struct inode x);
char x(*xd_dname) (struct dentry %, char *, 1int);
struct vfsmount *(*xd_automount) (struct path *);
int (xd_manage) (struct dentry %, bool);

45

L)
Das File Objekt

Liste aller File-Objekte

struct file {
union {

struct rcu_head fu_rcuhead;
P of_ug
struct path f_path;
struct inode xf_inode;
const struct file_operations xf_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

46

@ Bremen |
Das File Objekt

struct file {
union {
struct list_head fu_list;
struct rcu_head fu_rcuhead;

Flags zum genaueren Spezifizieren 1.f-us
des Eintrags struct path f_path;
9 struct inode *f_inode;

const struct file_operations xf_op;

spinlock_t f_lock;

atomic_long_t f_count;
: e 2o)

enum path_flags {

PATH_IS_DIR = 0Ox1, /* path is a directory */
PATH_CONNECT_PATH = 0x4, /* connect disconnected paths to / x/
PATH_CHROOT_REL = 0x8, /* do path lookup relative to chroot x/
PATH_CHROOT_NSCONNECT = 0x10, /* connect paths that are at ns root */

PATH_DELEGATE_DELETED = 0x08000, /% delegate deleted files x/
PATH_MEDIATE_DELETED = 0x10000, /* mediate deleted paths x/

I

L)
Das File Objekt

Dateioperationen

struct file {
union {
struct list_head fu_list;
struct rcu_head fu_rcuhead;
b f_u;
struct path f_path;

struct 1node *f _dinode;

atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;

loff_t f_pos;

struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

48

@ Bremen |
Das File Objekt

Position des Lese-/Schreibindex

struct file {
union {
struct Llist_head fu_list;
struct rcu_head fu_rcuhead;
P of_ug
struct path f_path;
struct inode xf_inode;
const struct file_operations
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *xf_cred;
struct file_ra_state f_ra;

*f_op;

49

@ Bremen |
Das File Objekt

struct file_operations {
struct module *owner;
Setzen des Lese-/Schreibindex loff_t (xllseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *x, char __user x,
size_t, loff_t x);
ssize_t (*xwrite) (struct file *x, const char __user x,
size_t, loff_t *);

int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file %,
struct poll_table_struct *);

int (*xmmap) (struct file *, struct vm_area_struct x);
int (*open) (struct inode x, struct file x);
int (*¥flush) (struct file x, fl_owner_t 1id);
int (*release) (struct inode *, struct file *);
int (xfsync) (struct file x, loff_t, loff_t,
int datasync);

50

Universitat
' U ' Bremen Grundlagen Dateisysteme

Das File Objekt

struct file_operations {
struct module *owner;
loff_t (*1llseek) (struct file *, loff_t, int);

Lese und Schreiben von Daten

int (*readdir) (struct file *, void *, filldir_t);
unsigned int (xpoll) (struct file x,
struct poll_table_struct *);

int (xmmap) (struct file *, struct vm_area_struct x*);
int (*open) (struct inode x, struct file x);
int (*¥flush) (struct file x, fl_owner_t 1id);
int (xrelease) (struct inode *, struct file x);
int (xfsync) (struct file x, loff_t, loff_t,
int datasync);

51

Universitat
Bremen

Beispiel eines Systemaufrufs

User Process

- read() system call

User space
Kernel

Kernel-read

struct task_struct files_struct > struct file

current->files->fdt->fd[£fd]
current

current->files

52

@ Bremen |
Beispiel eines Systemaufrufs - fs/read_write.c

SYSCALL_DEFINE3(read,
unsigned int, fd,

char __user x, buf,
‘ size_t, count5
struct fd f = fdget(fd);
ssi1ze_t ret = —-EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);

ret = vfs_readgf.f1le, buf, count, &pos);
file_pos_write(f.file, poss;

fdput(f);

return ret;

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user x, buf,
size_t, countj

{
struct fd f = fdget(fd); struct fd { .
ssize_t ret = -EBADF; struct file xfile;
if (f.file) { int need_put;
loff_t pos = file_pos_read(f.file); }s

ret = vfs_readgf.file, buf
file_pos_write(f.file, posj;
fdput(f);

return ret;

count, &pos);

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

SYSCALL_DEFINE3(read,
unsigned int, fd,

char __user x, buf,
r s1ze_t, countj
struct fd f = fdget(id);
ssize_t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_read%f.f11e, buf, count, &pos);
file_pos_write(f.file, posj;
fdput(f);
) return ret;

| Aufruf von fget_light

95

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

struct file *xfget_light(unsigned int fd, int *xfput_needed)
{
struct file xfile;
struct files_struct xfiles = current->files;
*fput_needed = 0;
if (atomic_read(&files->count) == 1) {
file = fcheck_files(files, fd);
if (file && (file->f_mode & FMODE_PATH))
file = NULL;
} else {
rcu_read_Llock();
file = fcheck_files(files, fd);
if (file) {
if (! (file->f_mode & FMODE_PATH) &&
atomic_long_inc_not_zero(&file->f_count))
xfput_needed = 1;
else
/* Didn't get the reference, someone's freed */
file = NULL;
}

rcu_read_unlock();

}

return file;

}

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

struct file *xfget_light(unsigned int fd, int *xfput_needed)

{
struct file xfile;
struct files_struct *files = current->files; Holt alle offenen Dateien des aktiven
*fput_needed = 0;
if (atomic_read(&files->count) == 1) { Prozesses
file = fcheck_files(files, fd);
if (file && (file->f_mode & FMODE_PATH))
file = NULL;
} else {
rcu_read_Llock();
file = fcheck_files(files, fd);
if (file) {
if (! (file->f_mode & FMODE_PATH) &&
atomic_long_inc_not_zero(&file->f_count))
xfput_needed = 1;
else
/* Didn't get the reference, someone's freed */
file = NULL;
}
rcu_read_unlock();
}

return file;

}

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

struct file *fget_light(unsigned 1int fd, int
x*fput_needed)
{
struct file xfile;
struct files_struct *xfiles = current->files;
*fput_needed = 0;
if (atomic_read(&files->count) == 1) {
file = fcheck_files(files, (d);
if (file && (file->f_mode & FMODE_PATH))
file = NULL;
} else {
rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {
if (! (file->f_mode & FMODE_PATH) &&
atomic_long_inc_not_zero(&file->f_count))
xfput_needed = 1;
else

Liefert files->fdt->fd[fd]

/* Didn't get the reference, someone's freed x*/

file = NULL;
}

rcu_read_unlock();

}

return file;

}

58

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

SYSCALL_DEFINE3(read,
unsigned int, fd,

char __user x, buf,
r s1ze_t, countj
struct fd f = fdget(fd);
ssi1ze_t ret = -EBADF;
if (f.file) {
loff_t pos = file_pos_read(f.file);
ret = vfs_read§f.?11e, buf, count, &pos);
file_pos_write(f.file, posj;
fdput(f);
) return ret;

Hole Lese-/Schreibindex aus f.f1ile

99

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user x, buf,
size_t, countj

{
struct fd f = fdget(fd);
ssi1ze_t ret = -EBADF;
if (f.file)
loff_t pos = file _pos read(f.file);
ret = vfs_readéf.?ile, buf, count, &pos);
file_pos_write(f.file, poss;
fdput(f);
) return ret;

Rufe die eigentliche Lesefunktion auf

60

Universitat
Bremen

Beispiel eines Systemaufrufs

ssize_t vfs_read(struct file xfile, char __user *xbuf, size_t count,
{
ssize_t ret;
if (! (file->f_mode & FMODE_READ))
return —-EBADF;
if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))
return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))
return -EFAULT;

ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {
count = ret;
if (file->f_op->read)
ret = file->f_op->read(file, buf, count, pos);
else
ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {
fsnotify_access(file);
add_rchar(current, ret);
}
inc_syscr(current);
}
return ret;

}

loff_t *pos)

61

Universitat
Bremen

Beispiel eines Systemaufrufs

ssize_t vfs_read(struct file xfile, char __user xbuf, size_t count, loff_t *pos)
{
ssize_t ret;
if (! (file->f_mode & FMODE_READ))
return —-EBADF;
if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))

return -EINVAL;

if (unlikely(!access_ok(VERIFY_WRITE,

return -EFAULT;

ret = rw_verify_area(READ, file,
if (ret >= 0) {

count = ret;

if (file->f_op->read)

pos,

buf, count)))

count) ;

ret = Tile->f_op->read(fle, buf, count, pos);

else
ret = do_sync_read(file, buf,
if (ret > 0) {
fsnotify_access(file);
add_rchar(current, ret);
}
inc_syscr(current);
}
return ret;

}

count, pos);

Dateisystem mit Lesen beauftragen

62

Universitat
Bremen

Beispiel eines Systemaufrufs - fs/read_write.c

SYSCALL_DEFINE3(read,
unsigned int, fd,

char __user x, buf,
(size_t, countj
struct fd f = fdget(fd);
ssi1ze_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_readéf-file, buf, count, &pos);

file_pos_write(f.file, pos); Aktualisiere Position im File-Objekt
fdput(f);

return ret;

Universitat
Bremen

Themenubersicht
« FS als API « Grundidee * Minix
« Terminologie « API-Typen FAT-Dateisysteme
« Management » Laufzeitsicht « ext-Dateisysteme
» Dateisysteme registrieren « Journaling
» Strukturen « Extents
» Superblock » Copy-On-Write
* Inode
* Dentry
* File

Dateisysteme

Universitat
Bremen

Minix-Dateisystem
Bootblock Superblock Inodes-Bitmap Block-Bitmap Inodes Daten
(1 Cluster) (1 Cluster) (1 Cluster) (1 Cluster) (15 Cluster) (??7? Cluster)

Bootblock Boot-Loader fur das Betriebssystem, Informationen Uber das Dateisystem,
» z.B. Anzahl der Inodes und Cluster
Inodes-Bitmap “Bitmap” die speichert, ob Inodes belegt (Wert: 1) oder frei (Wert: 0) sind
Cluster-Bitmap “Bitmap” die speichert, ob Cluster belegt (Wert: 1) oder frei (Wert: 0) sind
Inodes Enthalt Inodes mit den Metadaten

» Jede Datei und jedes Verzeichnis hat einen Inode mit Metadaten (Dateityp, UID/GID, Zugriffsrechte, GrofRe)
Daten Inhalt der Dateien und Verzeichnisse

65

Universitat
Bremen

FAT - Dateizuordnungstabelle

 Namensgeber ist Datenstruktur File Allocation Table (FAT, Dateizuordnungstabelle)
« Grole der FAT ist fest
» FAT speichert fur jeden Cluster folgenden Informationen:
* Frei
« Beschadigt
+ Belegt
» Cluster speichert Verweis auf den nachsten Cluster einer Datei
« FAT implementiert das Konzept einer einfach verketteten Liste

66

Universitat
Bremen

FAT - Dateizuordnungstabelle

Bootblock Reservierte FAT 1 FAT 2 Stammverzeichnis Daten
(1 Cluster) Cluster

Bootblock Boot-Loader fur das Betriebssystem, Informationen Uber das Dateisystem

» z.B. Blocke pro Cluster, Anzahl an Blocken

Reservierte Cluster Zusatlicher Platz fur den Bootmanager (wenn notwendig)

FAT Informationen Uber belegte Blocke (Bereich ist dupliziert um Ausfallwahrscheinlichkeit zu reduzieren)
Stammverzeichnis Informationen zum Wurzelverzeichnis

« z.B. Dateinamen, GrolRe, Datum, Dateityp (Verzeichnis, Datei), FAT-Eintrag

Daten Inhalt der Dateien und Verzeichnisse

67

Universitat
Bremen

FAT - Dateizuordnungstabelle

Eintrage im
Wurzelverzeichnis

FAT

401

402

402

EOF

575

576

577

CODE.C 02-01-2015 1240 Bytes | 401
0S.DAT 24-03-2012 4012 Bytes | 576
FILE.TXT

23-05-2007

23 Bytes

581

577

578

578

579

ATATA]

579

EOF

580

581

EOF

68

Universitat
Bremen

ext-Dateisysteme
Bootblock Blockgruppe 0 Blockgruppe 1 Blockgruppe 2 000 Blockgruppe n
Superblock Deskriptortabelle Block Bitmap Inode Tabelle Datenblocke

* Der Datentrager wird in gleich grol3e Blockgruppen unterteilt
» Jede Blockgruppe enthalt alle Informationen fur diese Blockgruppe
» Vorteile

» Lokalitatsprinzip der Informationen

» Schnellere Zugriffszeiten bei Festplatten

» Replikation des Superblocks (Datensicherheit)

69

Universitat
Bremen

ext-Dateisysteme
Bootblock Blockgruppe 0 Blockgruppe 1 Blockgruppe 2 000 Blockgruppe n
Superblock Deskriptortabelle Block Bitmap Inode Tabelle Datenblocke

Bootblock in Cluster 1 (1 kB)

Die Deskriptor-Tabelle enthalt
* Clusternummer des Block-Bitmaps

* Clusternummer des Inode-Bitmaps
» Anzahl der freien Cluster und Inodes in der Blockgruppe

Block- und Inode-Bitmap sind jeweils einen Cluster grof

» Speichern Informationen Uber die belegten Cluster und Inodes der Blockgruppe
Die Inode-Tabelle enthalt die Inodes der Blockgruppe
Die restlichen Cluster der Blockgruppe sind die Datenblocke

70

Universitat
Bremen

Journaling

 Beim Modifizieren von Verzeichnisstrukturen

oder Metadaten sind Schreibzugriffe notwendig
« Die Anderungen an dem Dateisystem sind

Transaktionen (atomar, konsistent, isoliert,
dauerhaft)

» Bei Ausfall wahrend des Schreibens ist
anschlie®ende Konsistenzpriufung notwendig

 In grolen Dateisystemen kann die Prufung
sehr lange (Stunden bis Tage) dauern

» Die Konsistenzprufung zu Uberspringen, kann
zum Datenverlust fuhren

- ,Anderungsjournal“ Giber die Schreibzugriffe
kann Prufaufwand einschranken

Dateisysteme

71

Universitat
Bremen

Journaling

» Dateisystem fuhrt ein Journal und sammelt
Schreibzugriffe

* Nach festem Zeitabstand wird das Journal
geschlossen und die Operationen durchgefuhrt

 Vorteil:
Nach einem Absturz mussen nur Dateien und
Metadaten aus dem Journal Uberpruft werden

* Nachteil
Durch Journaling mehr Schreiboperationen, da
Anderungen erst ins Journal geschrieben und
danach durchgefuhrt werden

* Varianten:

* Metadaten-Journaling
* Volistandiges Journaling

™ ol - - e
e

\

Dateisysteme

A o uennliieunits -

72

Universitat
Bremen

Journaling

« Metadaten-Journaling (Write-Back)

« Nur Anderungen (Inodes) an Metadaten im Journal
Nur Metadaten konnen auf Korrektheit gepruft werden
Konsistenzprufungen nach wenigen Sekunden abgeschlossen
Datenverlust noch immer moglich
ext3/4, NTFS und XFS unterstutzen diese Version

* Vollstandiges Journaling
« Anderungen an Metadaten und Dateien werden protokolliert
« Konsistenz der Dateien ist gewahrleistet
» Alle Schreiboperation werden doppelt durchgefthrt
* Diese Version ist bei ext3/4 optional
* NTFS und XFS unterstutzen diese Option nicht

73

U Bramen ¢
Extents

* Inodes verwenden
» Direkte Blockadressierung
 Indirekte Blockadressierung
* Doppelt indirekte Blockadressierung

Inode bei ext3/4 (Blockadressierung)

Clusteradresse 1 (direkt)

Clusteradresse 2 (direkt)

Clusteradresse 3 (direkt)

Clusteradresse 4 (direkt)

Clusteradresse 5 (direkt)

Clusteradresse 6 (direkt)

N[|WIN|=

Clusteradresse 8 (direkt)

Clusteradresse 9 (direkt)

©

Clusteradresse 10 (direkt)

10

Clusteradresse 11 (direkt)

11

Clusteradresse 12 (direkt)

12

A9
L
A
»
A
L
A
»
A
L
A
Ll
Clusteradresse 7 (direkt) >
A
Ll
A -
>
A
L
A
»
A
L

Clusteradresse 13 (indirekt) = f========ssmsesnommncmmnemmnemm e m e e e e

Clusteradresse 15 (dreifach indirekt) f===========ssemecmmnemmmnemmnemnncmmncmnnenn]

13 -268

65805 - 16843020

32 Bits (4 Bytes)

Clusternummern (Daten der Datei)

maximal
48 kB direkt
adressierbar

bei 4 kB
ClustergréBBe

12 Cluster

256 Cluster
65536 Cluster
16777216 Cluster

» Hierdurch steigt der Overhead fur Verwaltungsinformationen

* Losung: Extents

74

Universitat
Bremen

Extents

» Grundlegende Idee: Cluster sollen nicht einzeln zugeordnet werden. Stattdessen versucht man
zusammenhangende Bereiche zuzuordnen.

» Hierfur mussen drei Werte gespeichert werden:
 Nummer des Start-Clusters des Bereichs (Extents)
» GrolRe des Bereichs in Clustern
 Nummer des ersten Clusters auf dem Speichergerat

* Ergebnis: Weniger Verwaltungsaufwand Cluster der Datei
» Beispiele: JFS, XFS, btrfs, NTFS, ext4

Extent 1

1Extent 2

:Extent 3

Datentrager

75

@ Bremen |
Snapshots — Copy on Write

Vor dem Snapshot Nach dem Snapshot Nach Anderungen

Datei Datei Snapshot Datei Snapshot

','4 »

O]
‘0t

T T erhaltene
Uberschriebener geloscher neuer Cluster
Cluster Cluster Cluster (Original-Daten)

» Schreibzugriffe im Dateisystem andern/Idschen keine Dateiinhalte
* Veranderte Inhalte werden in freie Cluster geschrieben
» Anschliel’end werden die Metadaten auf die neue Datei angepasst
- Altere Dateiversionen bleiben erhalten und kdnnen wiederhergestellt werden
» Die Datensicherheit ist besser als bei Dateisystemen mit Journal
« Snapshots kénnen sehr schnell erzeugt werden (nur Metadaten-Anderung)

» Beispiele: ZFS, btrfs und ReFS (Resilient File System)

76

Universitat
Bremen

Themenubersicht
« FS als API « Grundidee * Minix
« Terminologie » API-Typen FAT-Dateisysteme
« Management » Laufzeitsicht « ext-Dateisysteme
» Dateisysteme registrieren « Journaling
« Strukturen « Extents
— Superblock * Copy-On-Write
—Inode
— Dentry
— File

Dateisysteme

Grundlagen

