
Dr. Bernhard J. Berger
AG Sichere Systeme

Dateisysteme



DatenträgerCPUTimer Speicher

Themenübersicht

02
 –

 P
ro

ze
ss

e 
un

d 
Th

re
ad

s

04 – Scheduler

03
 –

 S
ys

te
m

au
fr

uf
e 

un
d 

In
te

rr
up

ts

06
 –

 K
rit

is
ch

e 
A

bs
ch

ni
tte

05
 –

 S
pe

ic
he

rv
er

w
al

tu
ng

07
 –

 D
at

ei
sy

st
em

e

08
 –

 V
irt

ua
lis

ie
ru

ng

07
 –

 V
irt

ue
lle

s 
D

at
ei

sy
st

em

Betriebssystem

Anwendungen

Hardware 2



VFS Dateisysteme

• FS als API
• Terminologie
• Management

• Grundidee
• API-Typen
• Laufzeitsicht
• Dateisysteme registrieren
• Strukturen

‒ Superblock
‒ Inode
‒ Dentry
‒ File

• Minix
• FAT-Dateisysteme
• ext-Dateisysteme
• Journaling
• Extents
• Copy-On-Write

Grundlagen

Themenübersicht



Dateisystem als API
• Dateisystem 

• Hierarchische Organisationsstruktur für Dateien auf Datenspeichern
• Dateien sind zusammengehörende Dateninhalte

• Dateisystem verwaltet
• Dateinamen 
• Attribute (Metadaten)

• Dateisystem dient als
• API des Betriebssystems
• Dateinamen als Schnittstelle

• Wichtige Eigenschaften
• Geschwindigkeit
• Geringer Verschnitt

Grundlagen VFS Dateisysteme

4



Hardware
• Dateisysteme adressieren Cluster

• Jede Datei belegt eine ganzzahlige Menge an Clustern
• Alternativbegriffe: Zonen oder Blöcke
• Achtung: Sektoren von Festplatten werden auch manchmal Blöcke genannt

• Größe der Cluster
• Abhängig vom Dateisystem und von Konfiguration
• Beeinflusst Effizienz des Dateisystems

• Steigender Verwaltungsaufwand für große Dateien
• Abnehmender Kapazitätsverlust durch interne Fragmentierung

• Wird beim Anlegen des Dateisystems festgelegt

Grundlagen VFS Dateisysteme

Hinweis

Unter Linux wird empfohlen die Page-Size des Speichers bei der Wahl der Clustergröße zu 
berücksichtigen, damit Cluster effizient in den Speicher abgebildet werden können.

5



Kommandos
• Verwalten von Dateisystemen (Kommandozeile)

• mount [-t fs-type –o options] <device> <mount point>
• umount <mount point>
• mkfs.xxx
• fsck.xxx

• Beispiel zum Anlegen und Einbinden

Grundlagen VFS Dateisysteme

Terminal

> dd if=/dev/zero of=loop_fs.img bs=1M count=100
> mkfs.ext2 loop_fs.img 
> mkdir /mnt/my-fs
> mount -o loop loop_fs.img /mnt/my-fs
…
> umount /mnt/my-fs/

6



Linux-Dateisysteme
• Dateien und Verzeichnisse werden als Inode 

(Index Node) abgelegt
• Inode …

• … enthält Metadaten 
• Dateigröße
• UID/GID
• Zugriffsrechte
• Zugriffsdatum

• … hat eine eindeutige Inode-Nummer
• Datei-Inode verweist auf Cluster mit 

Dateiinhalt
• Verzeichnis-Inode enthält Namen und Inode-

Nummern für Verzeichnisinhalt

Grundlagen VFS Dateisysteme

ext2/ext3 Beispiel

7



Beispiel ext2/ext3
VFS Dateisysteme

8



Grundlagen

Themenübersicht

VFS Dateisysteme

• FS als API
• Terminologie
• Management

• Grundidee
• API-Typen
• Laufzeitsicht
• Dateisysteme registrieren
• Strukturen

‒ Superblock
‒ Inode
‒ Dentry
‒ File

• Minix
• FAT-Dateisysteme
• ext-Dateisysteme
• Journaling
• Extents
• Copy-On-Write

9



Grundidee
• Linux VFS verwendet Objektorientierung (in C)

• Betriebssystem bietet Systemaufrufe an
• open, close
• read, write
• lseek, unlink, mkdir, rmdir, readdir

• Systemaufrufe sind generisch umgesetzt
• Operieren auf generischen Datenstrukturen
• Führen grundlegende Buchführung durch
• Verwedendet dateisystemspezifische Funktionen

• Linux bietet eine einfache Möglichkeit neue 
Dateisysteme zu implementieren.
• Kernelmodul erstellen
• Funktionen implementieren
• Dateisystem registrieren

• Details

Grundlagen VFS Dateisysteme

https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour
https://git.fh-aachen.de/tb3838s/linux/-/blob/master/Documentation/filesystems/vfs.rst

10



API-Typen
VFS-Elemente: Insgesamt gibt es vier Objekte, die das VFS zur Verfügung stellt:

1. Superblock-Objekt Ein eingebundenes Dateisystem. Erlaubt das Einbinden und Aushängen.

2. Inode-Objekt Eine konkrete Datei im Dateisystem. Stellt Funktionen zum Anlegen, Löschen, Umbenennen usw. 
zur Verfügung.

3. Dentry-Objekt Ein Verzeichniseintrag (Datei oder Verzeichnis) und zugehörige Verzeichnisoperationen, wie 
Dateinamenvergleich, aushängen aus dem Dateisystembaum

4. File-Objekt Stellt eine offene Datei dar und stellt alle dateibezogenen Operationen wie Lesen und Schreiben zur 
Verfügung

Grundlagen VFS Dateisysteme

11



Laufzeitsicht
• Liste offener Dateien in Prozesstabelleneintrag

• Geöffnete Datei verweist auf dentry-Eintrag

• Dentry-Eintrag referenziert inodes der Datei
• Indode ordnet auf echtes Hardwaregerät zu

• Alle Strukturen sind VFS-Elemente

Grundlagen VFS Dateisysteme

https://www.starlab.io/blog/introduction-to-the-linux-virtual-filesystem-vfs-part-i-a-high-level-tour
12



Dateisystem registrieren – Kernelmodul
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>

#include <linux/fs.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Bernhard J. Berger <berber@tzi.de>");
MODULE_DESCRIPTION("Simple filesystem for the lecture operating systems");

// Forward declaration section
struct dentry *bsfs_mount (struct file_system_type *type, int flags,

const char *name, void *ptr);

const struct file_system_type bsfs = {
.owner = THIS_MODULE,
.name = "bsfs",
.mount = bsfs_mount,
.kill_sb = kill_litter_super

};

Grundlagen VFS Dateisysteme

13



Dateisystem registrieren – Kernelmodul
static int __init module_start(void) {

printk(KERN_INFO "Registering filesystem BSFS!\n");
return register_filesystem(&bsfs);

}

static void __exit module_end(void) {
printk(KERN_INFO "Unregistering filesystem BSFS!\n");
unregister_filesystem(&bsfs);

}

struct dentry *bsfs_mount (struct file_system_type *type, int flags,
const char *name, void *ptr) {

return NULL; // Implementierung ergänzen
}

module_init(module_start);
module_exit(module_end);

Grundlagen VFS Dateisysteme



Der Superblock – include/linux/fs.h
• Datenstruktur struct super_block

• Definiert in include/linux/fs.h
• Linux/Unix-spezifische Sicht auf das physische 

Dateisystem 
• Implementierung muss zwischen Linux und 

physischer Sicht vermitteln

struct super_block {
struct list_head s_list;
dev_t s_dev;
unsigned char s_blocksize_bits;
unsigned long s_blocksize;
loff_t s_maxbytes;
struct file_system_type *s_type;
const struct super_operations *s_op;
const struct dquot_operations *dq_op;
const struct quotactl_ops *s_qcop;
const struct export_operations

*s_export_op;
unsigned long s_flags;
unsigned long s_magic;
struct dentry *s_root;
struct rw_semaphore s_umount;
...

Grundlagen VFS Dateisysteme

15



Der Superblock – include/linux/fs.h
struct super_block {
  struct list_head s_list;
  dev_t s_dev;
  unsigned char s_blocksize_bits;
  unsigned long s_blocksize;
  loff_t s_maxbytes;
  struct file_system_type *s_type;
  const struct super_operations *s_op;
  const struct dquot_operations *dq_op;
  const struct quotactl_ops *s_qcop;
  const struct export_operations  
                            *s_export_op;
  unsigned long s_flags;
  unsigned long s_magic;
  struct dentry *s_root;
  struct rw_semaphore s_umount;
  ...

Grundlagen VFS Dateisysteme

Liste der eingebundenen Dateisysteme (werden 
durch ihren Superblock repräsentiert)

16



struct super_block {
  struct list_head s_list;
  dev_t s_dev;
  unsigned char s_blocksize_bits;
  unsigned long s_blocksize;
  loff_t s_maxbytes;
  struct file_system_type *s_type;
  const struct super_operations *s_op;
  const struct dquot_operations *dq_op;
  const struct quotactl_ops *s_qcop;
  const struct export_operations  
                            *s_export_op;
  unsigned long s_flags;
  unsigned long s_magic;
  struct dentry *s_root;
  struct rw_semaphore s_umount;
  ...

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Verweis auf das unterliegende Gerät

17



struct super_block {
  struct list_head s_list;
  dev_t s_dev;
  unsigned char s_blocksize_bits;
  unsigned long s_blocksize;
  loff_t s_maxbytes;
  struct file_system_type *s_type;
  const struct super_operations *s_op;
  const struct dquot_operations *dq_op;
  const struct quotactl_ops *s_qcop;
  const struct export_operations  
                            *s_export_op;
  unsigned long s_flags;
  unsigned long s_magic;
  struct dentry *s_root;
  struct rw_semaphore s_umount;
  ...

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Informationen über die Größe des physikalischen 
Dateisystems.



struct super_block {
  struct list_head s_list;
  dev_t s_dev;
  unsigned char s_blocksize_bits;
  unsigned long s_blocksize;
  loff_t s_maxbytes;
  struct file_system_type *s_type;
  const struct super_operations *s_op;
  const struct dquot_operations *dq_op;
  const struct quotactl_ops *s_qcop;
  const struct export_operations  
                            *s_export_op;
  unsigned long s_flags;
  unsigned long s_magic;
  struct dentry *s_root;
  struct rw_semaphore s_umount;
  ...

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Zeiger auf die Superblock-Operationen (siehe 
Registrierung des Dateisystems).

19



struct super_block {
  struct list_head s_list;
  dev_t s_dev;
  unsigned char s_blocksize_bits;
  unsigned long s_blocksize;
  loff_t s_maxbytes;
  struct file_system_type *s_type;
  const struct super_operations *s_op;
  const struct dquot_operations *dq_op;
  const struct quotactl_ops *s_qcop;
  const struct export_operations  
                            *s_export_op;
  unsigned long s_flags;
  unsigned long s_magic;
  struct dentry *s_root;
  struct rw_semaphore s_umount;
  ...

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Operationen für den Superblock

20



struct super_block {
  struct list_head s_list;
  dev_t s_dev;
  unsigned char s_blocksize_bits;
  unsigned long s_blocksize;
  loff_t s_maxbytes;
  struct file_system_type *s_type;
  const struct super_operations *s_op;
  const struct dquot_operations *dq_op;
  const struct quotactl_ops *s_qcop;
  const struct export_operations  
                            *s_export_op;
  unsigned long s_flags;
  unsigned long s_magic;
  struct dentry *s_root;
  struct rw_semaphore s_umount;
  ...

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Zeiger auf das Wurzelverzeichnis des Dateisystems

21



struct super_block {
  ...

struct list_head s_inodes; 
struct hlist_bl_head s_anon; 
struct list_head s_files;
struct list_head s_mounts; 
...
struct block_device *s_bdev;
struct backing_dev_info *s_bdi;
struct mtd_info *s_mtd;
struct hlist_node s_instances;

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Liste aller geladenen inode-Strukturen

22



struct super_block {
  ...

struct list_head s_inodes; 
struct hlist_bl_head s_anon; 
struct list_head s_files;
struct list_head s_mounts; 
...
struct block_device *s_bdev;
struct backing_dev_info *s_bdi;
struct mtd_info *s_mtd;
struct hlist_node s_instances;

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Liste aller offenen Dateieinträge

23



struct super_block {
  ...

struct list_head s_inodes; 
struct hlist_bl_head s_anon; 
struct list_head s_files;
struct list_head s_mounts; 
...
struct block_device *s_bdev;
struct backing_dev_info *s_bdi;
struct mtd_info *s_mtd;
struct hlist_node s_instances;

Der Superblock – include/linux/fs.h
Grundlagen VFS Dateisysteme

Zugehöriges Block-Gerät

24



struct super_operations {
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *,

struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_fs) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*umount_begin) (struct super_block *);
…

Die Superblock-Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Anlegen und Zerstören einer inode

25



struct super_operations {
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *,

struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_fs) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*umount_begin) (struct super_block *);
…

Die Superblock-Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Inode als geändert markieren. Wird 
für spezielle Operationen benötigt.

26



struct super_operations {
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *,

struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_fs) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*umount_begin) (struct super_block *);
…

Die Superblock-Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Schreiben und Löschen einer inode 
auf/von physischem Gerät

27



struct super_operations {
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *,

struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_fs) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*umount_begin) (struct super_block *);
…

Die Superblock-Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Superblock freigeben (bei unmount)

28



struct super_operations {
struct inode *(*alloc_inode)(struct super_block *sb);
void (*destroy_inode)(struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *,

struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs)(struct super_block *sb, int wait);
int (*freeze_fs) (struct super_block *);
int (*unfreeze_fs) (struct super_block *);
int (*statfs) (struct dentry *, struct kstatfs *);
int (*remount_fs) (struct super_block *, int *, char *);
void (*umount_begin) (struct super_block *);
…

Die Superblock-Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Metadaten des Dateisystems auf das 
physische Gerät schreiben.

29



struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
struct posix_acl *i_acl;
struct posix_acl *i_default_acl;
const struct inode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
dev_t i_rdev;
loff_t i_size;
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Berechtigungsinformationen

30



struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
struct posix_acl *i_acl;
struct posix_acl *i_default_acl;
const struct inode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
dev_t i_rdev;
loff_t i_size;
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Zugriffskontrollinformationen

31



struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
struct posix_acl *i_acl;
struct posix_acl *i_default_acl;
const struct inode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
dev_t i_rdev;
loff_t i_size;
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Inode bezogene Operationen

32



struct inode {
umode_t i_mode;
unsigned short i_opflags;
kuid_t i_uid;
kgid_t i_gid;
unsigned int i_flags;
struct posix_acl *i_acl;
struct posix_acl *i_default_acl;
const struct inode_operations *i_op;
struct super_block *i_sb;
struct address_space *i_mapping;
dev_t i_rdev;
loff_t i_size;
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Aktuelle Dateigröße

33



struct inode {
unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node i_hash;
struct list_head i_wb_list; 
struct list_head i_lru; 
struct list_head i_sb_list;
union {

struct hlist_head i_dentry;
struct rcu_head i_rcu;

};
u64 i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop; 
... 
struct list_head i_devices;
union {

struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

};
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Anzahl an Bytes im letzten Block

34



struct inode {
unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node i_hash;
struct list_head i_wb_list; 
struct list_head i_lru; 
struct list_head i_sb_list;
union {

struct hlist_head i_dentry;
struct rcu_head i_rcu;

};
u64 i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop; 
... 
struct list_head i_devices;
union {

struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

};
…

Die inode – include/linux/fs.h
Grundlagen VFS

Anzahl an Blöcken

35



struct inode {
unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node i_hash;
struct list_head i_wb_list; 
struct list_head i_lru; 
struct list_head i_sb_list;
union {

struct hlist_head i_dentry;
struct rcu_head i_rcu;

};
u64 i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop; 
... 
struct list_head i_devices;
union {

struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

};
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Liste von LRU-Seiten, die Blöcke der 
Datei cachen

36



struct inode {
unsigned short i_bytes;
unsigned int i_blkbits;
blkcnt_t i_blocks;
struct hlist_node i_hash;
struct list_head i_wb_list; 
struct list_head i_lru; 
struct list_head i_sb_list;
union {

struct hlist_head i_dentry;
struct rcu_head i_rcu;

};
u64 i_version;
atomic_t i_count;
atomic_t i_dio_count;
atomic_t i_writecount;
const struct file_operations *i_fop; 
... 
struct list_head i_devices;
union {

struct pipe_inode_info *i_pipe;
struct block_device *i_bdev;
struct cdev *i_cdev;

};
…

Die inode – include/linux/fs.h
Grundlagen VFS Dateisysteme

Dateioperationen

37



struct inode_operations {
struct dentry * (*lookup) (struct inode *,

struct dentry *,
unsigned int);

void * (*follow_link) (struct dentry *, struct nameidata *);
int (*permission) (struct inode *, int);
struct posix_acl * (*get_acl)(struct inode *, int);
int (*readlink) (struct dentry *, char __user *,int);
void (*put_link) (struct dentry *, struct nameidata *, void *);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*rmdir) (struct inode *,struct dentry *);
…

Die inode Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Sucht file-Eintrag im angegebenen 
Verzeichnis

38



struct inode_operations {
struct dentry * (*lookup) (struct inode *,

struct dentry *,
unsigned int);

void * (*follow_link) (struct dentry *, struct nameidata *);
int (*permission) (struct inode *, int);
struct posix_acl * (*get_acl)(struct inode *, int);
int (*readlink) (struct dentry *, char __user *,int);
void (*put_link) (struct dentry *, struct nameidata *, void *);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*rmdir) (struct inode *,struct dentry *);
…

Die inode Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Gibt ACL-Informationen der Inode 
zurück.

39



struct inode_operations {
struct dentry * (*lookup) (struct inode *,

struct dentry *,
unsigned int);

void * (*follow_link) (struct dentry *, struct nameidata *);
int (*permission) (struct inode *, int);
struct posix_acl * (*get_acl)(struct inode *, int);
int (*readlink) (struct dentry *, char __user *,int);
void (*put_link) (struct dentry *, struct nameidata *, void *);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*rmdir) (struct inode *,struct dentry *);
…

Die inode Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Erzeugt eine neue Inode in dem 
angegebenen Ordner. Die über-
gebene Inode wird gefüllt.

40



struct inode_operations {
struct dentry * (*lookup) (struct inode *,

struct dentry *,
unsigned int);

void * (*follow_link) (struct dentry *, struct nameidata *);
int (*permission) (struct inode *, int);
struct posix_acl * (*get_acl)(struct inode *, int);
int (*readlink) (struct dentry *, char __user *,int);
void (*put_link) (struct dentry *, struct nameidata *, void *);
int (*create) (struct inode *,struct dentry *, umode_t, bool);
int (*link) (struct dentry *,struct inode *,struct dentry *);
int (*unlink) (struct inode *,struct dentry *);
int (*symlink) (struct inode *,struct dentry *,const char *);
int (*mkdir) (struct inode *,struct dentry *,umode_t);
int (*rmdir) (struct inode *,struct dentry *);
…

Die inode Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Hängt die übergebene Inode aus.

41



struct inode_operations {
…
int (*rename) (struct inode *, struct dentry *,

struct inode *, struct dentry *);
int (*setattr) (struct dentry *, struct iattr *);
int (*getattr) (struct vfsmount *mnt, struct dentry *,

struct kstat *);
int (*setxattr) (struct dentry *, const char *,

const void *,size_t,int);
ssize_t (*getxattr) (struct dentry *, const char *,

void *, size_t);
ssize_t (*listxattr) (struct dentry *, char *, size_t);
int (*removexattr) (struct dentry *, const char *);
int (*fiemap)(struct inode *, struct fiemap_extent_info *,

u64 start, u64 len);
int (*update_time)(struct inode *, struct timespec *, int);
int (*atomic_open)(struct inode *, struct dentry *,

struct file *, unsigned open_flag,
umode_t create_mode, int *opened);

Die inode Operationen – include/linux/fs.h
Grundlagen VFS Dateisysteme

Erzeugt und öffnet eine Datei

42



struct dentry {
unsigned int d_flags; 
seqcount_t d_seq; 
struct hlist_bl_node d_hash; 
struct dentry *d_parent; 
struct qstr d_name;
struct inode *d_inode; 
unsigned char d_iname[DNAME_INLINE_LEN]; 
unsigned int d_count; 
spinlock_t d_lock; 
const struct dentry_operations *d_op;
struct super_block *d_sb;
…

Das dentry Objekt – include/linux/dcache.h
Grundlagen VFS Dateisysteme

Die Inode, die diesen dentry darstellt

43



struct dentry {
unsigned int d_flags; 
seqcount_t d_seq; 
struct hlist_bl_node d_hash; 
struct dentry *d_parent; 
struct qstr d_name;
struct inode *d_inode; 
unsigned char d_iname[DNAME_INLINE_LEN]; 
unsigned int d_count; 
spinlock_t d_lock; 
const struct dentry_operations *d_op;
struct super_block *d_sb;
…

Das dentry Objekt – include/linux/dcache.h
Grundlagen VFS Dateisysteme

Operationen für den dentry

44



struct dentry_operations {
int (*d_revalidate)(struct dentry *, unsigned int);
int (*d_weak_revalidate)(struct dentry *, unsigned int);
int (*d_hash)(const struct dentry *,

const struct inode *,
struct qstr *);

int (*d_compare)(const struct dentry *,
const struct inode *,
const struct dentry *,
const struct inode *,
unsigned int,
const char *, const struct qstr *);

int (*d_delete)(const struct dentry *);
void (*d_release)(struct dentry *);
void (*d_prune)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);
char *(*d_dname)(struct dentry *, char *, int);
struct vfsmount *(*d_automount)(struct path *);
int (*d_manage)(struct dentry *, bool);

} 

Das dentry Operationen – include/linux/dcache.h
Grundlagen VFS Dateisysteme

Vergleiche zwei Verzeichniseinträge 
anhand ihres Namens.

45



struct file {
union {

struct list_head fu_list;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

Das File Objekt
Grundlagen VFS Dateisysteme

Liste aller File-Objekte

46



struct file {
union {

struct list_head fu_list;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

Das File Objekt
Grundlagen VFS Dateisysteme

Flags zum genaueren Spezifizieren 
des Eintrags

enum path_flags {
PATH_IS_DIR = 0x1, /* path is a directory */
PATH_CONNECT_PATH = 0x4, /* connect disconnected paths to / */
PATH_CHROOT_REL = 0x8, /* do path lookup relative to chroot */
PATH_CHROOT_NSCONNECT = 0x10, /* connect paths that are at ns root */

PATH_DELEGATE_DELETED = 0x08000, /* delegate deleted files */
PATH_MEDIATE_DELETED = 0x10000, /* mediate deleted paths */

};

47



struct file {
union {

struct list_head fu_list;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

Das File Objekt
Grundlagen VFS Dateisysteme

Dateioperationen

48



struct file {
union {

struct list_head fu_list;
struct rcu_head fu_rcuhead;

} f_u;
struct path f_path;
struct inode *f_inode;
const struct file_operations *f_op;
spinlock_t f_lock;
atomic_long_t f_count;
unsigned int f_flags;
fmode_t f_mode;
loff_t f_pos;
struct fown_struct f_owner;
const struct cred *f_cred;
struct file_ra_state f_ra;

Das File Objekt
Grundlagen VFS Dateisysteme

Position des Lese-/Schreibindex

49



struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,   

size_t, loff_t *);
...
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *,

struct poll_table_struct *);
..
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t,

int datasync);
…

Das File Objekt
Grundlagen VFS Dateisysteme

Setzen des Lese-/Schreibindex

50



struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *,   

size_t, loff_t *);
...
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *,

struct poll_table_struct *);
..
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *, fl_owner_t id);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, loff_t, loff_t,

int datasync);
…

Das File Objekt
Grundlagen VFS Dateisysteme

Lese und Schreiben von Daten

51



Beispiel eines Systemaufrufs
Grundlagen VFS Dateisysteme

52



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user *, buf,
size_t, count)

{
struct fd f = fdget(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
file_pos_write(f.file, pos);
fdput(f);

}
return ret;

}

53



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user *, buf,
size_t, count)

{
struct fd f = fdget(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
file_pos_write(f.file, pos);
fdput(f);

}
return ret;

}

struct fd {
struct file *file;
int need_put;

};

54



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user *, buf,
size_t, count)

{
struct fd f = fdget(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
file_pos_write(f.file, pos);
fdput(f);

}
return ret;

}

Aufruf von fget_light

55



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

struct file *fget_light(unsigned int fd, int *fput_needed)
{

struct file *file;
struct files_struct *files = current->files;
*fput_needed = 0;
if (atomic_read(&files->count) == 1) {

file = fcheck_files(files, fd);
if (file && (file->f_mode & FMODE_PATH))

file = NULL;
} else {

rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {

if (!(file->f_mode & FMODE_PATH) &&
atomic_long_inc_not_zero(&file->f_count))

*fput_needed = 1;
else
/* Didn't get the reference, someone's freed */
file = NULL;

}
rcu_read_unlock();
}
return file;

}
56



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

struct file *fget_light(unsigned int fd, int *fput_needed)
{

struct file *file;
struct files_struct *files = current->files;
*fput_needed = 0;
if (atomic_read(&files->count) == 1) {

file = fcheck_files(files, fd);
if (file && (file->f_mode & FMODE_PATH))

file = NULL;
} else {

rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {

if (!(file->f_mode & FMODE_PATH) &&
atomic_long_inc_not_zero(&file->f_count))

*fput_needed = 1;
else
/* Didn't get the reference, someone's freed */
file = NULL;

}
rcu_read_unlock();
}
return file;

}

Holt alle offenen Dateien des aktiven 
Prozesses

57



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

struct file *fget_light(unsigned int fd, int
*fput_needed)
{

struct file *file;
struct files_struct *files = current->files;
*fput_needed = 0;
if (atomic_read(&files->count) == 1) {

file = fcheck_files(files, fd);
if (file && (file->f_mode & FMODE_PATH))

file = NULL;
} else {

rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {

if (!(file->f_mode & FMODE_PATH) &&
atomic_long_inc_not_zero(&file->f_count))

*fput_needed = 1;
else
/* Didn't get the reference, someone's freed */
file = NULL;

}
rcu_read_unlock();
}
return file;

}

Liefert files->fdt->fd[fd]

58



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user *, buf,
size_t, count)

{
struct fd f = fdget(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
file_pos_write(f.file, pos);
fdput(f);

}
return ret;

}

Hole Lese-/Schreibindex aus  f.file

59



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user *, buf,
size_t, count)

{
struct fd f = fdget(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
file_pos_write(f.file, pos);
fdput(f);

}
return ret;

}

Rufe die eigentliche Lesefunktion auf

60



Beispiel eines Systemaufrufs
Grundlagen VFS Dateisysteme

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{

ssize_t ret;
if (!(file->f_mode & FMODE_READ))

return -EBADF;
if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))

return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))

return -EFAULT;

ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file->f_op->read)

ret = file->f_op->read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

} 61



Beispiel eines Systemaufrufs
Grundlagen VFS Dateisysteme

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{

ssize_t ret;
if (!(file->f_mode & FMODE_READ))

return -EBADF;
if (!file->f_op || (!file->f_op->read && !file->f_op->aio_read))

return -EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count)))

return -EFAULT;

ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file->f_op->read)

ret = file->f_op->read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Dateisystem mit Lesen beauftragen

62



Beispiel eines Systemaufrufs - fs/read_write.c
Grundlagen VFS Dateisysteme

SYSCALL_DEFINE3(read,
unsigned int, fd,
char __user *, buf,
size_t, count)

{
struct fd f = fdget(fd);
ssize_t ret = -EBADF;
if (f.file) {

loff_t pos = file_pos_read(f.file);
ret = vfs_read(f.file, buf, count, &pos);
file_pos_write(f.file, pos);
fdput(f);

}
return ret;

}

Aktualisiere Position im File-Objekt

63



Grundlagen

Themenübersicht

VFS Dateisysteme

• FS als API
• Terminologie
• Management

• Grundidee
• API-Typen
• Laufzeitsicht
• Dateisysteme registrieren
• Strukturen

• Superblock
• Inode
• Dentry
• File

• Minix
• FAT-Dateisysteme
• ext-Dateisysteme
• Journaling
• Extents
• Copy-On-Write



Minix-Dateisystem
Grundlagen VFS Dateisysteme

• Bootblock Boot-Loader für das Betriebssystem, Informationen über das Dateisystem,
• z.B. Anzahl der Inodes und Cluster

• Inodes-Bitmap “Bitmap” die speichert, ob Inodes belegt (Wert: 1) oder frei (Wert: 0) sind
• Cluster-Bitmap “Bitmap” die speichert, ob Cluster belegt (Wert: 1) oder frei (Wert: 0) sind
• Inodes Enthält Inodes mit den Metadaten

• Jede Datei und jedes Verzeichnis hat einen Inode mit Metadaten (Dateityp, UID/GID, Zugriffsrechte, Größe)
• Daten Inhalt der Dateien und Verzeichnisse

Bereich 1 Bereich 2 Bereich 3 Bereich 4 Bereich 5 Bereich 6
Bootblock
(1 Cluster)

Superblock
(1 Cluster)

Inodes-Bitmap
(1 Cluster)

Block-Bitmap
(1 Cluster)

Inodes
(15 Cluster)

Daten
(??? Cluster)

65



FAT - Dateizuordnungstabelle
Grundlagen VFS Dateisysteme

• Namensgeber ist Datenstruktur File Allocation Table (FAT, Dateizuordnungstabelle)
• Größe der FAT ist fest
• FAT speichert für jeden Cluster folgenden Informationen: 

• Frei
• Beschädigt
• Belegt

• Cluster speichert Verweis auf den nächsten Cluster einer Datei
• FAT implementiert das Konzept einer einfach verketteten Liste

66



FAT - Dateizuordnungstabelle
Grundlagen VFS Dateisysteme

• Bootblock Boot-Loader für das Betriebssystem, Informationen über das Dateisystem
• z.B. Blöcke pro Cluster, Anzahl an Blöcken

• Reservierte Cluster Zusätlicher Platz für den Bootmanager (wenn notwendig)
• FAT Informationen über belegte Blöcke (Bereich ist dupliziert um Ausfallwahrscheinlichkeit zu reduzieren)
• Stammverzeichnis Informationen zum Wurzelverzeichnis

• z.B. Dateinamen, Größe, Datum, Dateityp (Verzeichnis, Datei), FAT-Eintrag
• Daten Inhalt der Dateien und Verzeichnisse

Bereich 1 Bereich 2 Bereich 3 Bereich 4 Bereich 5 Bereich 6
Bootblock
(1 Cluster)

Reservierte
Cluster

FAT 1 FAT 2 Stammverzeichnis Daten

67



FAT - Dateizuordnungstabelle
Grundlagen VFS Dateisysteme

68



ext-Dateisysteme
Grundlagen VFS Dateisysteme

• Der Datenträger wird in gleich große Blockgruppen unterteilt
• Jede Blockgruppe enthält alle Informationen für diese Blockgruppe
• Vorteile

• Lokalitätsprinzip der Informationen
• Schnellere Zugriffszeiten bei Festplatten
• Replikation des Superblocks (Datensicherheit)

Bootblock Blockgruppe 0 Blockgruppe 1 Blockgruppe 2 Blockgruppe n

Superblock Deskriptortabelle Block Bitmap Inode Tabelle Datenblöcke

69



ext-Dateisysteme
Grundlagen VFS Dateisysteme

• Bootblock in Cluster 1 (1 kB)
• Die Deskriptor-Tabelle enthält

• Clusternummer des Block-Bitmaps 
• Clusternummer des Inode-Bitmaps 
• Anzahl der freien Cluster und Inodes in der Blockgruppe

• Block- und Inode-Bitmap sind jeweils einen Cluster groß
• Speichern Informationen über die belegten Cluster und Inodes der Blockgruppe

• Die Inode-Tabelle enthält die Inodes der Blockgruppe
• Die restlichen Cluster der Blockgruppe sind die Datenblöcke

Bootblock Blockgruppe 0 Blockgruppe 1 Blockgruppe 2 Blockgruppe n

Superblock Deskriptortabelle Block Bitmap Inode Tabelle Datenblöcke

70



Journaling
• Beim Modifizieren von Verzeichnisstrukturen 

oder Metadaten sind Schreibzugriffe notwendig
• Die Änderungen an dem Dateisystem sind 

Transaktionen (atomar, konsistent, isoliert, 
dauerhaft)

• Bei Ausfall während des Schreibens ist 
anschließende Konsistenzprüfung notwendig

• In großen Dateisystemen kann die Prüfung 
sehr lange (Stunden bis Tage) dauern

• Die Konsistenzprüfung zu überspringen, kann 
zum Datenverlust führen

• „Änderungsjournal“ über die Schreibzugriffe 
kann Prüfaufwand einschränken

Grundlagen VFS Dateisysteme

71



Journaling
• Dateisystem führt ein Journal und sammelt 

Schreibzugriffe
• Nach festem Zeitabstand wird das Journal 

geschlossen und die Operationen durchgeführt
• Vorteil:

Nach einem Absturz müssen nur Dateien und 
Metadaten aus dem Journal überprüft werden

• Nachteil
Durch Journaling mehr Schreiboperationen, da 
Änderungen erst ins Journal geschrieben und 
danach durchgeführt werden

• Varianten: 
• Metadaten-Journaling
• Vollständiges Journaling 

Grundlagen VFS Dateisysteme

72



Journaling
• Metadaten-Journaling (Write-Back)

• Nur Änderungen (Inodes) an Metadaten im Journal
• Nur Metadaten können auf Korrektheit geprüft werden 
• Konsistenzprüfungen nach wenigen Sekunden abgeschlossen
• Datenverlust noch immer möglich
• ext3/4, NTFS und XFS unterstützen diese Version

• Vollständiges Journaling 
• Änderungen an Metadaten und Dateien werden protokolliert
• Konsistenz der Dateien ist gewährleistet
• Alle Schreiboperation werden doppelt durchgeführt
• Diese Version ist bei ext3/4 optional
• NTFS und XFS unterstützen diese Option nicht

Grundlagen VFS Dateisysteme

73



Extents
• Inodes verwenden

• Direkte Blockadressierung
• Indirekte Blockadressierung
• Doppelt indirekte Blockadressierung

• Hierdurch steigt der Overhead für Verwaltungsinformationen
• Lösung: Extents

Grundlagen VFS Dateisysteme

74



Extents
• Grundlegende Idee: Cluster sollen nicht einzeln zugeordnet werden. Stattdessen versucht man 

zusammenhängende Bereiche zuzuordnen.
• Hierfür müssen drei Werte gespeichert werden:

• Nummer des Start-Clusters des Bereichs (Extents)
• Größe des Bereichs in Clustern
• Nummer des ersten Clusters auf dem Speichergerät

• Ergebnis: Weniger Verwaltungsaufwand
• Beispiele: JFS, XFS, btrfs, NTFS, ext4

Grundlagen VFS Dateisysteme

75



Snapshots – Copy on Write

• Schreibzugriffe im Dateisystem ändern/löschen keine Dateiinhalte
• Veränderte Inhalte werden in freie Cluster geschrieben
• Anschließend werden die Metadaten auf die neue Datei angepasst

• Ältere Dateiversionen bleiben erhalten und können wiederhergestellt werden
• Die Datensicherheit ist besser als bei Dateisystemen mit Journal
• Snapshots können sehr schnell erzeugt werden (nur Metadaten-Änderung)

• Beispiele: ZFS, btrfs und ReFS (Resilient File System)

Grundlagen VFS Dateisysteme

76



Grundlagen

Themenübersicht

VFS Dateisysteme

• FS als API
• Terminologie
• Management

• Grundidee
• API-Typen
• Laufzeitsicht
• Dateisysteme registrieren
• Strukturen

‒ Superblock
‒ Inode
‒ Dentry
‒ File

• Minix
• FAT-Dateisysteme
• ext-Dateisysteme
• Journaling
• Extents
• Copy-On-Write


