

Exercise Set 9

Exercise 9.1 Give an example of a network N , with a flow f , such that the flow is not maximum, and there is no way to improve the flow by increasing along a path using only forward pointing edges. (In other words, using augmented paths in the algorithm is really essential!)

(6 Punkte)

Exercise 9.2 Is it possible to find a network with maximal flows f and f' , such that the values of f and f' are different on all the edges?

(6 Punkte)

Exercise 9.3 Let N be a network with the source s and the sink t . An *elementary flow* is a flow which is obtained by assigning a constant positive value to the set of edges on a directed path from s to t , and assigning value 0 to all other edges. Show that every flow is the sum of elementary flows.

(6 Punkte)

Exercise 9.4 Let N be a network, and let (S, T) and (S', T') be cuts of minimum capacity. Prove that the cut $(S \cup S', T \cap T')$ also has a minimum capacity.

(6 Punkte)

Submission of the exercises: Tues, 13.01.26, before the tutorial (until 12:15) into the postbox 54 in MZH 1st floor, or submission at the beginning of the 12:30-tutorial.