
03. Übungsblatt : Betriebssysteme
Ausgabe: Mittwoch, 07. Januar 2026 Dr. rer. nat. Bernhard J. Berger
Bearbeitungszeitraum: 07.01. bis 22.02.2026
Abgabe: 22.02.2026

Wintersemester 2025/2026

Auf diesem Übungsblatt werden wir uns mit der Implementierung von Dateisystemen unter Linux
mithilfe von FUSE auseinandersetzen.
Hinweis: Es kann sein, dass Details der folgenden Spezifikation sich über die Wochen noch ändern,
wenn die Spezifikation ungenau und missverständlich ist. Solche Änderungen werden im Dokument
entsprechend farbig markiert.

Aufgabe 1: Verschlüsselndes Dateisystem
Hinweis: Änderungen gegenüber dem Originaldokument sind in blau hervorgehoben.

Aufgabe: Implementieren Sie das im Folgenden beschriebene Dateisystem mit Hilfe von
FUSE
Als Senior-Softwareentwickler des Unternehmen ExtremeSecureIT haben Sie den Auftrag bekommen,
ein Linux-Dateisystem zu entwickeln, das Daten mit dem extrem sicherenTM Verschlüsselungsverfahren
xor verschlüsselt.1

1 Speicherlayout
Die Struktur des Dateisystems ist an das Minix-Dateisystem angelehnt und besteht aus mehreren
Bereichen. Jeder Block auf diesem Dateisystem hat die Größe von 1k = 1024 Byte und die ganzzahli-
gen Werte der in diesem Dokument spezifizierten Strukturen werden als unsigned-Werte gespeichert.
Beachten Sie die Speicherung als Little-Endian, damit es nicht zu Interpretationsunstimmigkeiten
kommt. Die grundlegende Struktur des Dateisystems ist die folgende:

SecFS – Speicherlayout
Größe (Blöcke) Beschreibung

Super Block 1 Informationen über das Dateisystem
Inode Map (iMap) #Inodes/(1024 × 8) Welche Inodes belegt sind (bitcodiert)
Zone Map (zMap) #DataZones/(1024 × ∗8) Welche Data Zones belegt sind (bitcodiert)
Inodes (#Inodes × 32)/1024 Liste aller Inodes
Data Zones Rest Liste aller Daten

Die iMap und zMap speichern als Bit-Wert, für jede einzelne Inode (bzw. jede einzelne Zone), ob diese
belegt ist oder nicht. Ist das Bit auf 0 gesetzt, dann ist der Eintrag leer. Ist dieser auf 1 gesetzt, so ist
er belegt.

2 Superblock
Der Superblock enhält Informationen über die Struktur des Dateisystems. Der Mount-Status wird beim
mounten des Dateisystems auf den Wert 1 gesetzt und beim Aushängen des Dateisystems auf den Wert
0. Das Dateisystem soll sicherstellen, ob ein Dateisystem, das gemounted wird, in diesem Eintrag den
Wert 0 stehen hat. Der Schlüssel für die root-Inode wird bei der Erstellung des Dateisystems ausgesucht
und in den Superblock geschrieben. Die Struktur des Suberblocks sieht wie folgt aus:

1Dieses Verfahren wurde von der Tutorin für Kryptographie als sicherer eingestuft.

1



SecFS – Superblock
Start Ende Inhalt

00 - 01 Anzahl der Inodes
02 - 03 Anzahl der Zonen
04 - 05 Größe der iMap (in Blöcken)
06 - 07 Größe der zMap (in Blöcken)
08 - 09 Startblock der Zonenblöcke
0A - 0B Größe einer Zone (in Blöcken)
0C - 0F Maximale Dateigröße (in Bytes)
10 - 11 Magic Number 57005
12 - 12 Mount-Status (0 oder 1)
13 - 13 Schlüssel für die root Inode

3 Inode
Eine Inode enthält alle Informationen für einen Dateieintrag. Dieses kann entweder eine Datei oder ein
Verzeichnis sein. Der Modus-Einträg der Inode wird mit den Werten aus <linux/types.h> gesetzt,
zum Beispiel S_IFREG und S_IFDIR. Die Datenzonen sind ihrerseits wieder mit dem oben genannten
Verfahren verschlüsselt. Der Zonenschlüssel wird jeweils vor dem zugehörigen Zonenindex gespeichert
und wird beim Erzeugen eines Eintrags zufällig erzeugt. Um einen Zonen-Index-Eintrag als ungültig
zu markieren benutzen Sie den Zonen-Index 0xFFFF. Die root-Inode wird immer in Inode 0 gespeichert
und der zugehörige dentry-Eintrag in Zone 0.

SecFS – Inode
Start Ende Inhalt

00 - 01 Modus
02 - 03 User ID
04 - 07 Dateigröße
08 - 0B Zugriffszeit
0C - 0D Gruppen ID
0E - 0E Anzahl an Links
0F - 0F Schlüssel für Zone 0
10 - 11 Zonenindex für Zone 0
12 - 12 Schlüssel für Zone 1
13 - 14 Zonenindex für Zone 1
15 - 15 Schlüssel für Zone 2
16 - 17 Zonenindex für Zone 2
18 - 18 Schlüssel für Zone 3
19 - 1A Zonenindex für Zone 3
1B - 1B Schlüssel für Zone 4
2C - 1D Zonenindex für Zone 4

Wichtiger Hinweis: Wir implementieren in dieser Version des Dateisystems nur direkte Zonenverweise.
Dadurch ist die obere Dateigrenze stark limitiert (5 ∗ 1024 << block_size).

4 Dentry
Dentrys werden in den Zonen abgelegt, die über eine Verzeichnis-Inode verlinkt sind. Ein einzelner
Eintrag in einem Dentry ist 32 Byte lang. Die ersten beiden Bytes geben die Inode des Verzeichnisein-
trags an und die verbleibenden 30 Zeichen sind für den Namen des Eintrags reserviert. Ist der Name
kürzer als die genannten 30 Zeichen, so wird dieser mit einem Null-Byte (\0) abgeschlossen.

2



5 Implementierungshinweis
Am besten starten Sie mit einem C-Programm (mkfs.secfs)zum Erzeugen eines leeren Dateisystems.
Hierbei können Sie Dateisystemdatenstrukturen anlegen und das grundlegende Konzept des Dateisy-
stems verstehen. Versuchen Sie sich erst anschließend an der Implementierung des Kernel-Moduls. Das
Kommandzeilenprogramm hexdump ermöglicht ihnen, dass sie sich die geschriebene Datei byteweise
anschauen.

6 Evaluation
Um eure Implementierung zu prüfen bekommt jede Gruppe eine individuell erstellte Datei. Diese Datei
müsst ihr mit eurem Dateisystemtreiber mounten und den Inhalt der Datei /bs/challenge.txt (un-
verschlüsselt) auslesen. Diesen Inhalt sollt ihr nun in einer neuen Datei unter /abgabe/winter2526/response.txt
schreiben. Darüber hinaus sollt ihr in dieser Datei ein Gedicht, Limerick oder Haiku ablegen.

3


	Speicherlayout
	Superblock
	Inode
	Dentry
	Implementierungshinweis
	Evaluation

