@ Universitat Bremen

03. Ubungsblatt : Betriebssysteme

Ausgabe: Mittwoch, 07. Januar 2026 Dr. rer. nat. Bernhard J. Berger
Bearbeitungszeitraum: 07.01. bis 22.02.2026
Abgabe: 22.02.2026

Wintersemester 2025/2026

Auf diesem Ubungsblatt werden wir uns mit der Implementierung von Dateisystemen unter Linux
mithilfe von FUSE auseinandersetzen.

Hinweis: FEs kann sein, dass Details der folgenden Spezifikation sich ‘ber die Wochen noch dndern,
wenn die Spezifikation ungenau und missverstindlich ist. Solche Anderungen werden im Dokument
entsprechend farbig markiert.

Aufgabe 1: Verschliisselndes Dateisystem

Hinweis: Anderungen gegeniiber dem Originaldokument sind in blau hervorgehoben.

Aufgabe: Implementieren Sie das im Folgenden beschriebene Dateisystem mit Hilfe von
FUSE

Als Senior-Softwareentwickler des Unternehmen ExtremeSecurelT haben Sie den Auftrag bekommen,
ein Linux-Dateisystem zu entwickeln, das Daten mit dem extrem sicheren™ Verschliisselungsverfahren
zor verschliisselt [T

1 Speicherlayout

Die Struktur des Dateisystems ist an das Minix-Dateisystem angelehnt und besteht aus mehreren
Bereichen. Jeder Block auf diesem Dateisystem hat die Gréfle von 1k = 1024 Byte und die ganzzahli-
gen Werte der in diesem Dokument spezifizierten Strukturen werden als unsigned-Werte gespeichert.
Beachten Sie die Speicherung als Little-Endian, damit es nicht zu Interpretationsunstimmigkeiten
kommt. Die grundlegende Struktur des Dateisystems ist die folgende:

’ SecF'S — Speicherlayout ‘

Grofle (Blocke) Beschreibung
Super Block 1 Informationen {iber das Dateisystem
Inode Map (iMap) || #Inodes/(1024 x 8) Welche Inodes belegt sind (bitcodiert)
Zone Map (zMap) || #DataZones/(1024 x x8) | Welche Data Zones belegt sind (bitcodiert)
Inodes (#Inodes x 32)/1024 Liste aller Inodes
Data Zones Rest Liste aller Daten

Die iMap und zMap speichern als Bit-Wert, fiir jede einzelne Inode (bzw. jede einzelne Zone), ob diese
belegt ist oder nicht. Ist das Bit auf 0 gesetzt, dann ist der Eintrag leer. Ist dieser auf 1 gesetzt, so ist
er belegt.

2 Superblock

Der Superblock enhélt Informationen tiber die Struktur des Dateisystems. Der Mount-Status wird beim
mounten des Dateisystems auf den Wert 1 gesetzt und beim Aushédngen des Dateisystems auf den Wert
0. Das Dateisystem soll sicherstellen, ob ein Dateisystem, das gemounted wird, in diesem Eintrag den
Wert 0 stehen hat. Der Schliissel fiir die root-Inode wird bei der Erstellung des Dateisystems ausgesucht
und in den Superblock geschrieben. Die Struktur des Suberblocks sieht wie folgt aus:

!Dieses Verfahren wurde von der Tutorin fiir Kryptographie als sicherer eingestuft.

] SecF'S — Superblock

Start Ende || Inhalt
00 - 01 Anzahl der Inodes
02 - 03 Anzahl der Zonen
04 - 05 GroBe der iMap (in Blocken)
06 - 07 GroBe der zMap (in Blocken)
08 - 09 Startblock der Zonenblocke
0A - OB | GrofBe einer Zone (in Blocken)
0C - OF | Maximale Dateigrofle (in Bytes)
10 - 11 Magic Number 57005
12 - 12 Mount-Status (0 oder 1)
13 - 13 Schliissel fiir die root Inode

3 Inode

Eine Inode enthélt alle Informationen fiir einen Dateieintrag. Dieses kann entweder eine Datei oder ein
Verzeichnis sein. Der Modus-Eintrdg der Inode wird mit den Werten aus <linux/types.h> gesetzt,
zum Beispiel S_IFREG und S_IFDIR. Die Datenzonen sind ihrerseits wieder mit dem oben genannten
Verfahren verschliisselt. Der Zonenschliissel wird jeweils vor dem zugehorigen Zonenindex gespeichert
und wird beim Erzeugen eines Eintrags zufillig erzeugt. Um einen Zonen-Index-Eintrag als ungiiltig
zu markieren benutzen Sie den Zonen-Index OxFFFF. Die root-Inode wird immer in Inode 0 gespeichert
und der zugehorige dentry-Eintrag in Zone 0.

’ SecFS — Inode

Start Ende || Inhalt
00 - 01 Modus
02 - 03 User ID
04 - 07 Dateigrofie
08 - 0B Zugriffszeit
0oCc - 0D Gruppen ID
0OE - OE Anzahl an Links
OF - OF Schliissel fiir Zone 0
10 - 11 Zonenindex fiir Zone 0
12 - 12 Schliissel fiir Zone 1
13 - 14 Zonenindex fir Zone 1
15 - 15 Schliissel fiir Zone 2
16 - 17 Zonenindex fiir Zone 2
18 - 18 Schliissel fiir Zone 3
19 - 1A Zonenindex fiir Zone 3
1B - 1B Schliissel fiir Zone 4
2C - 1D Zonenindex fiir Zone 4

Wichtiger Hinweis: Wir implementieren in dieser Version des Dateisystems nur direkte Zonenverweise.
Dadurch ist die obere Dateigrenze stark limitiert (5% 1024 << block__size).

4 Dentry

Dentrys werden in den Zonen abgelegt, die iiber eine Verzeichnis-Inode verlinkt sind. Ein einzelner
Eintrag in einem Dentry ist 32 Byte lang. Die ersten beiden Bytes geben die Inode des Verzeichnisein-
trags an und die verbleibenden 30 Zeichen sind fiir den Namen des Eintrags reserviert. Ist der Name
kiirzer als die genannten 30 Zeichen, so wird dieser mit einem Null-Byte (\0) abgeschlossen.

5 Implementierungshinweis

Am besten starten Sie mit einem C-Programm (mkfs.secfs)zum Erzeugen eines leeren Dateisystems.
Hierbei konnen Sie Dateisystemdatenstrukturen anlegen und das grundlegende Konzept des Dateisy-
stems verstehen. Versuchen Sie sich erst anschliefend an der Implementierung des Kernel-Moduls. Das
Kommandzeilenprogramm hexdump ermoglicht ihnen, dass sie sich die geschriebene Datei byteweise
anschauen.

6 Evaluation

Um eure Implementierung zu priifen bekommt jede Gruppe eine individuell erstellte Datei. Diese Datei

miisst ihr mit eurem Dateisystemtreiber mounten und den Inhalt der Datei /bs/challenge.txt (un-
verschliisselt) auslesen. Diesen Inhalt sollt ihr nun in einer neuen Datei unter /abgabe/winter2526/response. txt
schreiben. Dariiber hinaus sollt ihr in dieser Datei ein Gedicht, Limerick oder Haiku ablegen.

	Speicherlayout
	Superblock
	Inode
	Dentry
	Implementierungshinweis
	Evaluation

